Partial Mechanism Design & Incomplete-Information Industrial Organization

EC'23 Tutorial

Ellen Muir

Harvard University

June 21, 2023

"Meta" question: How can mechanism design inform real-world economic policy?

Introduction

Framework

Analysis

Application #1

Application #2

"Meta" question: How can mechanism design inform real-world economic policy?

In reality, we care about not just the direct impact of policy, but also its equilibrium effects.

Introduction

Framework

Analysis Application #1

Application #2

Discussion

"Meta" question: How can mechanism design inform real-world economic policy?

In reality, we care about not just the direct impact of policy, but also its equilibrium effects.

For example, consider the following:

#1. How should a firm optimally sell its goods?

#2. How should a social planner optimally redistribute?

(with a downstream market)

(with a private market)

Introduction

Framework

Application #1 Analysis

Application #2

"Meta" question: How can mechanism design inform real-world economic policy?

In reality, we care about not just the direct impact of policy, but also its equilibrium effects.

For example, consider the following:

#1. How should a firm optimally sell its goods?

#2. How should a social planner optimally redistribute?

(with a downstream market)

(with a private market)

Introduction

Framework

Application #1 Analysis

Application #2

"Meta" question: How can mechanism design inform real-world economic policy?

In reality, we care about not just the direct impact of policy, but also its equilibrium effects.

For example, consider the following:

- **#1.** How should a firm optimally sell its goods? (with a downstream market)
- **#2.** How should a social planner optimally redistribute? (with a private market)

In these examples, the mechanism designer can design only part of the market.

Introduction

Framework Analysis

Application #1

Application #2

Mechanism design with equilibrium effects

#1. Consumers freely participate in designed market; allocations are realized.

- Monopolist sells a final good to consumers or an input good to producers.
- Social planner sells public housing units to consumers.

Introduction

Framework

Analysis

Application #1

Application #2

Mechanism design with equilibrium effects

#1. Consumers freely participate in designed market; allocations are realized.

- Monopolist sells a final good to consumers or an input good to producers.
- Social planner sells public housing units to consumers.
- **#2.** Given allocations from **#1**, agents freely participate in undesigned aftermarket.
 - Consumers have option to participate in a resale market following primary market.
 - Using the input, producers supply a final good to downstream consumers.
 - Consumers with no public housing unit participate in private market for apartments.

Mechanism design with equilibrium effects

#1. Consumers freely participate in designed market; allocations are realized.

- Monopolist sells a final good to consumers or an input good to producers.
- Social planner sells public housing units to consumers.
- **#2.** Given allocations from **#1**, agents freely participate in undesigned aftermarket.
 - Consumers have option to participate in a resale market following primary market.
 - Using the input, producers supply a final good to downstream consumers.
 - Consumers with no public housing unit participate in private market for apartments.

Question: How should the mechanism designer allocate the good in #1?

There are equilibrium effects: allocations in #1 affect outcomes in #2-and vice versa.

 $\underset{\circ \bullet \circ}{\text{Introduction}}$

Framework

Application #1

Analysis

Application #2

Goals of this tutorial

- **#1.** Introduce a relatively new and rapidly growing research program.
 - Recent revived interest in applying large-market mechanism design to applied problems:
 Condorelli (2013); Dworczak (r) al. (2021); Akbarpour (r) al. (2021); Kang (2022);
 Akbarpour (r) al. (2022); Pai and Strack (2022)...
 - Part of this literature is interested in equilibrium effects in these problems:

Loertscher and Muir (2022); Kang and Muir (2022); Kang (2023)...

Introduction Framework Analysis Application #1 Application #2

Goals of this tutorial

- **#1.** Introduce a relatively new and rapidly growing research program.
 - Recent revived interest in applying large-market mechanism design to applied problems:

Condorelli (2013); Dworczak (r) al. (2021); Akbarpour (r) al. (2021); Kang (2022); Akbarpour (r) al. (2022); Pai and Strack (2022)...

- Part of this literature is interested in equilibrium effects in these problems:

Loertscher and Muir (2022); Kang and Muir (2022); Kang (2023)...

- **#2.** Develop a unified framework and adapt classic tools from mechanism design to tackle these problems.
 - Adapt some classic tools from mechanism design.

Goals of this tutorial

- **#1.** Introduce a relatively new and rapidly growing research program.
 - Recent revived interest in applying large-market mechanism design to applied problems:

Condorelli (2013); Dworczak (r) al. (2021); Akbarpour (r) al. (2021); Kang (2022); Akbarpour (r) al. (2022); Pai and Strack (2022)...

- Part of this literature is interested in equilibrium effects in these problems:

Loertscher and Muir (2022); Kang and Muir (2022); Kang (2023)...

- **#2.** Develop a unified framework and adapt classic tools from mechanism design to tackle these problems.
 - Adapt some classic tools from mechanism design.

#3. Conclude with some open questions.

Framework

Introduction

Framework

Analysis

Application #1

Application #2

Discussion

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

Consumers differ in types θ , whose CDF *F* has positive density f on $[\underline{\theta}, \overline{\theta}] \subset \mathbb{R}_+$.

Introduction

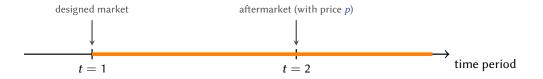
Framework

Analysis Application #1

Application #2

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

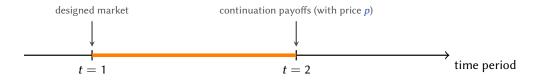
Consumers differ in types θ , whose CDF *F* has positive density f on $[\underline{\theta}, \overline{\theta}] \subset \mathbb{R}_+$.



Introduction Framework Analysis Application #1 Application #2 Discussion

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

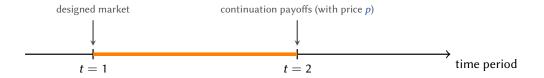
Consumers differ in types θ , whose CDF *F* has positive density f on $[\underline{\theta}, \overline{\theta}] \subset \mathbb{R}_+$.



Introduction Framework Analysis Application #1 Application #2 Dis

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

Consumers differ in types θ , whose CDF *F* has positive density f on $[\underline{\theta}, \overline{\theta}] \subset \mathbb{R}_+$.



Continuation payoffs (with price *p*):

 $\begin{cases} v_0(p;\theta) & \text{if } \underline{\text{not}} \text{ allocated the good in the designed market,} \\ v_1(p;\theta) & \text{if } allocated the good in the designed market.} \end{cases}$

Introduction

Framework ○●○○○ Analysis

Application #1

Application #2

Model: mechanism designer

There is a mechanism designer who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives good; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Introduction

Framework

Analysis Application #1

1 #1 Applic

Application #2

Discussion

Model: mechanism designer

There is a mechanism designer who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives good; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Given *p*, the payoff of the mechanism designer is, for some increasing function $\Pi_1 : \mathbb{R} \to \mathbb{R}$ and some function $\Pi_0 : \mathbb{R}_+ \to \mathbb{R}$,

$$\Pi(x;p) = \Pi_1\left(\int_{\underline{\theta}}^{\overline{\theta}} \psi(\theta;p)x(\theta) \, \mathrm{d}F(\theta)\right) + \Pi_0(p).$$

Key assumption (A): Π is an affine functional of *x* (up to increasing transformation).

Introduction

Framework

Analysis Application #1

#1 Application #2

Model: aftermarket

The price *p* in the aftermarket depends on the mechanism (x, t) through

 $\phi(p) = P(x)$, for some function $\phi : \mathbb{R}_+ \to \mathbb{R}$.

Denote the laissez-faire price by p_0 , so that $\phi(p_0) = P(0)$.

Introduction

Framework

Analysis Application #1

Application #2

Discussion

Model: aftermarket

The price p in the aftermarket depends on the mechanism (x, t) through

 $\phi(p) = P(x)$, for some function $\phi : \mathbb{R}_+ \to \mathbb{R}$.

Denote the laissez-faire price by p_0 , so that $\phi(p_0) = P(0)$.

Idea (will be microfounded further for applications):

- Allocation x changes residual demand and residual supply in the aftermarket.
- ▶ In equilibrium, price *p* is where residual demand or residual MR = residual supply.

Introduction Framework Analysis Application #1 Application #2 Discussion

Model: aftermarket

The price p in the aftermarket depends on the mechanism (x, t) through

 $\phi(p) = P(x)$, for some function $\phi : \mathbb{R}_+ \to \mathbb{R}$.

Denote the laissez-faire price by p_0 , so that $\phi(p_0) = P(0)$.

Idea (will be microfounded further for applications):

- ▶ Allocation *x* changes residual demand and residual supply in the aftermarket.
- ▶ In equilibrium, price *p* is where residual demand or residual MR = residual supply.

Key assumption (B): P(x) is an affine functional of *x*.

Introduction

Framework

Analysis Application #1

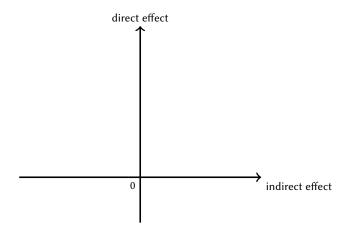
Application #2

$$\Pi(x; p) - \Pi(0; p_0) = \underbrace{\Pi(x; p) - \Pi(0; p)}_{\text{direct effect (price = p)}} + \underbrace{\Pi(0; p) - \Pi(0; p_0)}_{\text{indirect effect (price p_0 \to p)}}$$

Introduction Framework Analysis Application #1

Application #2

Discussion



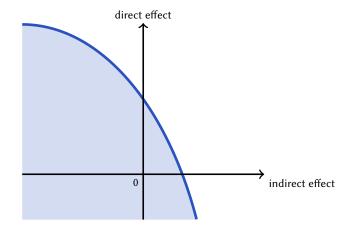
 $\Pi(x; p) - \Pi(0; p_0) =$ **direct effect** (price = p) + **indirect effect** (price $p_0 \rightarrow p$).

Introduction

Framework

Analysis Application #1

Application #2



 $\Pi(x; p) - \Pi(0; p_0) =$ **direct effect** (price = p) + **indirect effect** (price $p_0 \rightarrow p$).

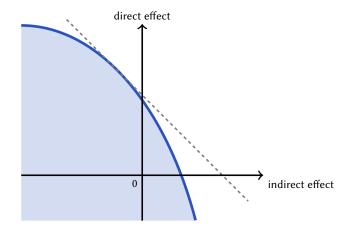
Introduction

Framework

Analysis

Application #1

Application #2



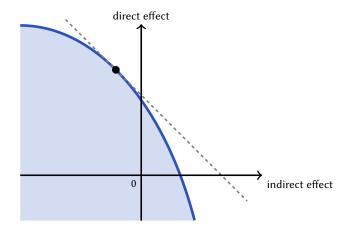
 $\Pi(x; p) - \Pi(0; p_0) =$ **direct effect** (price = p) + **indirect effect** (price $p_0 \rightarrow p$).

Introduction

Framework

Analysis Application #1

Application #2



 $\Pi(x; p) - \Pi(0; p_0) =$ **direct effect** (price = p) + **indirect effect** (price $p_0 \rightarrow p$).

Introduction

Framework

Analysis Application #1

Application #2

Discussion

Analysis

Introduction

Framework

Analysis App

Application #1

Application #2

Discussion

Question: How should the mechanism designer allocate the good?

Introduction

Framework

Analysis Application #1

Application #2

Discussion

Question: How should the mechanism designer allocate the good?

To answer this question, we proceed in two steps:

Choose price *p* in the aftermarket to induce in equilibrium.

Analysis

Choose mechanism (x, t) that induces the equilibrium price p in aftermarket in (1). 2

Introduction

Framework

Application #1 00000000

Application #2

Question: How should the mechanism designer allocate the good?

To answer this question, we proceed in two steps:

Choose price *p* in the aftermarket to induce in equilibrium.

Analysis

Equivalently, choose indirect effect $\Pi(0; p) - \Pi(0; p_0)$ to induce in equilibrium.

Choose mechanism (x, t) that induces the equilibrium price p in aftermarket in (1).

Introduction

Framework

Application #1 00000000

Application #2

Question: How should the mechanism designer allocate the good?

To answer this question, we proceed in two steps:

Choose price *p* in the aftermarket to induce in equilibrium.

Equivalently, choose indirect effect $\Pi(0; p) - \Pi(0; p_0)$ to induce in equilibrium.

Choose mechanism (x, t) that induces the equilibrium price p in aftermarket in (1).

For the chosen value of indirect effect, maximize the direct effect $\Pi(x; p) - \Pi(0; p)$.

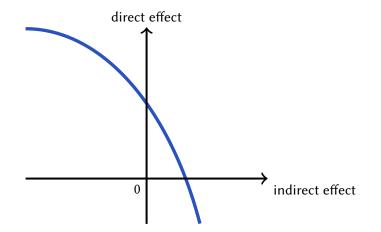
Introduction

Framework

Analysis

Application #1 000000000

Application #2



Choose mechanism that maximizes direct effect at any given value of the indirect effect.

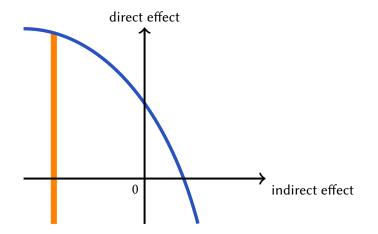
Introduction

Framework

Analysis

Application #1 000000000

Application #2



Choose mechanism that maximizes direct effect at any given value of the indirect effect.

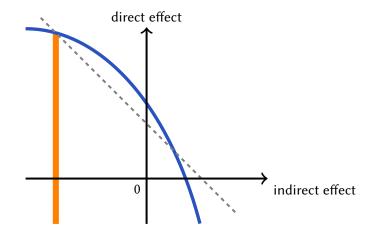
Introduction

Framework

Analysis

Application #1 000000000

Application #2



Choose mechanism that maximizes direct effect at any given value of the indirect effect.

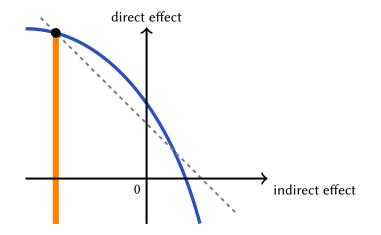
Introduction

Framework

Analysis

Application #1 000000000

Application #2



Choose mechanism that maximizes direct effect at any given value of the indirect effect.

Introduction

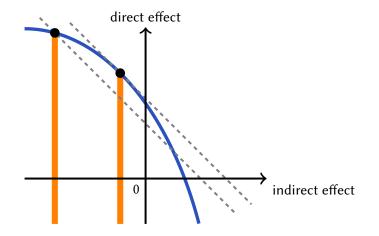
Framework

Analysis

Application #1 000000000

Application #2

Solving the mechanism design problem



Choose mechanism that maximizes direct effect at any given value of the indirect effect.

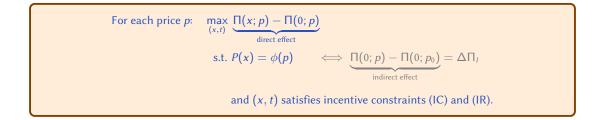
Introduction

Framework

Analysis

Application #1 000000000

Application #2



Introduction

Framework

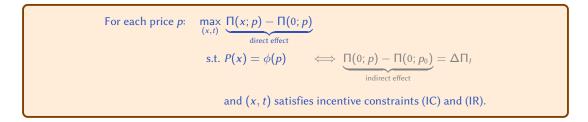
Analysis

Application #1

Application #2

Discussion

13



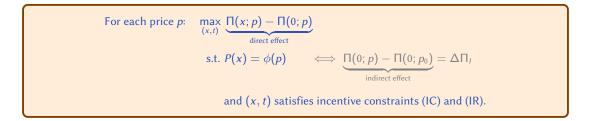
▶ Incentive compatibility: consumers report their types truthfully, *i.e.*,

$$\theta \in \underset{\theta' \in [\underline{\theta},\overline{\theta}]}{\arg \max} \left\{ v_1(p;\theta) \cdot x(\theta') + v_0(p;\theta) \cdot \left[1 - x(\theta')\right] - t(\theta') \right\} \quad \forall \, \theta \in [\underline{\theta},\overline{\theta}].$$
(IC)

Introduction Framework Analysis

Application #1

Application #2

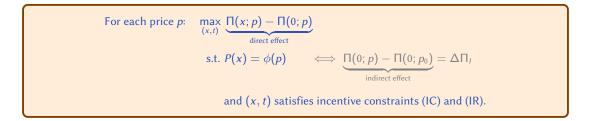


▶ Incentive compatibility: consumers report their types truthfully, *i.e.*,

$$\theta \in \underset{\theta' \in [\underline{\theta},\overline{\theta}]}{\arg \max} \left\{ v_1(p;\theta) \cdot x(\theta') + v_0(p;\theta) \cdot \left[1 - x(\theta')\right] - t(\theta') \right\} \quad \forall \, \theta \in [\underline{\theta},\overline{\theta}].$$
(IC)

Individual rationality: consumers participate in the designed market voluntarily, i.e.,

$$v_{1}(p;\theta) \cdot x(\theta) + v_{0}(p;\theta) \cdot [1 - x(\theta)] - t(\theta) \ge v_{0}(p;\theta) \quad \forall \ \theta \in [\underline{\theta}, \overline{\theta}].$$
(IR)



▶ Incentive compatibility: consumers report their types truthfully, *i.e.*,

$$\theta \in \underset{\theta' \in [\theta,\overline{\theta}]}{\arg \max} \left\{ v_1(p;\theta) \cdot x(\theta') + v_0(p;\theta) \cdot \left[1 - x(\theta')\right] - t(\theta') \right\} \quad \forall \, \theta \in [\underline{\theta},\overline{\theta}].$$
(IC)

Individual rationality: consumers participate in the designed market voluntarily, i.e.,

$$v_{1}(p;\theta) \cdot x(\theta) + v_{0}(p;\theta) \cdot [1 - x(\theta)] - t(\theta) \ge v_{0}(p;\theta) \quad \forall \ \theta \in [\underline{\theta}, \overline{\theta}].$$
(IR)

Incentive compatibility (IC) with an aftermarket

$$\theta \in \underset{\theta' \in [\underline{\theta}, \overline{\theta}]}{\arg \max} \left\{ v_1(p; \theta) \cdot x(\theta') + v_0(p; \theta) \cdot [1 - x(\theta')] - t(\theta') \right\} \quad \forall \ \theta \in [\underline{\theta}, \overline{\theta}].$$
(IC)

This is equivalent to:

$$heta \in rgmax_{ heta' \in [\underline{ heta}, \overline{ heta}]} \left\{ \left[v_1(p; heta) - v_0(p; heta) \right] \cdot x(heta') - t(heta')
ight\} \quad \forall \ heta \in [\underline{ heta}, \overline{ heta}].$$

Introduction Framework Analysis Application #1

Application #2

Incentive compatibility (IC) with an aftermarket

$$\theta \in \underset{\theta' \in [\underline{\theta},\overline{\theta}]}{\arg \max} \left\{ v_1(p;\theta) \cdot x(\theta') + v_0(p;\theta) \cdot [1 - x(\theta')] - t(\theta') \right\} \quad \forall \, \theta \in [\underline{\theta},\overline{\theta}].$$
(IC)

This is equivalent to:

$$\theta \in \underset{\theta' \in [\underline{\theta}, \overline{\theta}]}{\arg \max} \left\{ \left[v_1(p; \theta) - v_0(p; \theta) \right] \cdot x(\theta') - t(\theta') \right\} \quad \forall \ \theta \in [\underline{\theta}, \overline{\theta}].$$

Define the **effective type** $\eta(\theta; p) := v_1(p; \theta) - v_0(p; \theta)$.

Introduction Framework

ork Analysis

Application #1

Application #2

Individual rationality (IR) with an aftermarket

$$v_1(p;\theta) \cdot x(\theta) + v_0(p;\theta) \cdot [1-x(\theta)] - t(\theta) \ge v_0(p;\theta) \quad \forall \ \theta \in [\underline{\theta}, \overline{\theta}]. \tag{IR}$$

This is equivalent to:

$$[\mathbf{v}_1(\mathbf{p};\theta) - \mathbf{v}_0(\mathbf{p};\theta)] \cdot \mathbf{x}(\theta') - t(\theta') \geq 0 \quad \forall \ \theta \in [\underline{\theta},\overline{\theta}].$$

Define the **effective type** $\eta(\theta; p) := v_1(p; \theta) - v_0(p; \theta)$.

Introduction Framework Analysis Application #1

Application #2

Individual rationality (IR) with an aftermarket

$$v_1(p;\theta) \cdot x(\theta) + v_0(p;\theta) \cdot [1 - x(\theta)] - t(\theta) \ge v_0(p;\theta) \quad \forall \ \theta \in [\underline{\theta}, \overline{\theta}]. \tag{IR}$$

This is equivalent to:

$$[\mathbf{v}_1(\mathbf{p};\theta)-\mathbf{v}_0(\mathbf{p};\theta)]\cdot \mathbf{x}(\theta')-t(\theta')\geq 0\quad\forall\ \theta\in[\underline{\theta},\overline{\theta}].$$

Define the **effective type** $\eta(\theta; p) := v_1(p; \theta) - v_0(p; \theta)$.

 \therefore WLOG, the designer considers mechanisms that elicit only information about η .

Introduction

Framework

Analysis Application #1

#1 Application #2

on #2 Discussion

Myerson's lemma

Myerson's lemma holds up to a change of variables from θ to $\eta(\theta; p)$:

Lemma 1. For any given price p, let $\underline{\eta} = \min_{\theta \in [\theta,\overline{\theta}]} \eta(\theta;p) \quad \text{and} \quad \overline{\eta} = \max_{\theta \in [\theta,\overline{\theta}]} \eta(\theta;p).$ Then any mechanism (x, t) satisfies (IC) and (IR) only if there exist a non-decreasing function $\hat{x} : [\eta, \overline{\eta}] \to [0, 1]$ and a function $\hat{t} : [\eta, \overline{\eta}] \to \mathbb{R}$ such that 1. $x(\theta) = \hat{x}(\eta(\theta; p))$ almost everywhere; and 2. $t(\theta) = \hat{t}(\eta(\theta; p))$ almost everywhere, such that $\eta \cdot \hat{x}(\eta) - \hat{t}(\eta) = \underline{\eta} \cdot \hat{x}(\underline{\eta}) - \hat{t}(\underline{\eta}) + \int_{\eta}^{\eta} \hat{x}(s) \, \mathrm{d}s \quad \text{for all } \eta \in [\underline{\eta}, \overline{\eta}] \quad \text{and} \quad \underline{\eta} \cdot \hat{x}(\underline{\eta}) - \hat{t}(\underline{\eta}) \geq 0.$

Introduction

Framework

Application #1 00000000000

Analysis

Application #2

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

Introduction

Framework

Analysis

Application #1

Application #2

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

The optimal mechanism has a simple structure:

- **#1.** consumers who pay the higher price receive the good with probability 1;
- **#2.** consumers who pay the lower price receive the good with probability $\pi \in (0, 1)$.

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

The optimal mechanism has a simple structure:

- **#1.** consumers who pay the higher price receive the good with probability 1;
- **#2.** consumers who pay the lower price receive the good with probability $\pi \in (0, 1)$.

This provides a new justification for rationing: to trade off direct and indirect effects.

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

The designer's problem can be expressed as:

$$\max_{\hat{x}} \int_{\underline{\eta}}^{\overline{\eta}} \mathbf{E}[\psi(\theta; p) | \eta] \hat{x}(\eta) \, \mathrm{d}G(\eta)$$

s.t.
$$\begin{cases} \hat{x} : [\underline{\eta}, \overline{\eta}] \to [0, 1] \text{ is non-decreasing,} \\ \phi(p) = P(\hat{x}). \end{cases}$$

This is an infinite-dimensional linear program: objective and constraint are **affine** in \hat{x} .

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

The designer's problem can be expressed as:

Framework

Analysis

000000000

Introduction

$$\max_{\hat{x}} \int_{\underline{\eta}}^{\overline{\eta}} \mathbf{E}[\psi(\theta; p) | \eta] \hat{x}(\eta) \, \mathrm{d}G(\eta)$$

s.t.
$$\begin{cases} \hat{x} : [\underline{\eta}, \overline{\eta}] \to [0, 1] \text{ is non-decreasing,} \\ \phi(p) = P(\hat{x}). \end{cases}$$

This is an infinite-dimensional linear program: objective and constraint are **affine** in \hat{x} .

Application #1

Any extreme point x^* of the feasible region satisfies im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

Application #2

Discussion

18

Partial Mechanism Design & Incomplete-Information Industrial Organization

EC'23 Tutorial

Zi Yang Kang

Harvard University

June 21, 2023

Application #1: Vertical Contracting

inspired by Kang and Muir (2022)

Introduction

Framework

Analysis

Application #1

Application #2

Discussion

2

- Many dominant firms do not necessarily sell a final good directly to consumers; instead, they sell an input good to suppliers, who use it to produce a final good.
 - For example, Amazon sells distribution services to merchants, who then sell to downstream consumers; Google sells ads to third-party sellers, who use ads to make sale.

Framework

Analysis Application #1

Application #2

- Many dominant firms do not necessarily sell a final good directly to consumers; instead, they sell an input good to suppliers, who use it to produce a final good.
 - For example, Amazon sells distribution services to merchants, who then sell to downstream consumers; Google sells ads to third-party sellers, who use ads to make sale.
- Little is known about how the downstream market impacts upstream contracting.
 - In the paper, we study when such dominant firms should be allowed to merge with third-party sellers (*i.e.*, how vertical mergers impact welfare in the market).

Introduction Framework Analysis occorrection #1 Application #2

- Many dominant firms do not necessarily sell a final good directly to consumers; instead, they sell an input good to suppliers, who use it to produce a final good.
 - For example, Amazon sells distribution services to merchants, who then sell to downstream consumers; Google sells ads to third-party sellers, who use ads to make sale.
- Little is known about how the downstream market impacts upstream contracting.
 - In the paper, we study when such dominant firms should be allowed to merge with third-party sellers (*i.e.*, how vertical mergers impact welfare in the market).

Question: How does the dominant firm optimally contract with third-party sellers?

Introduction

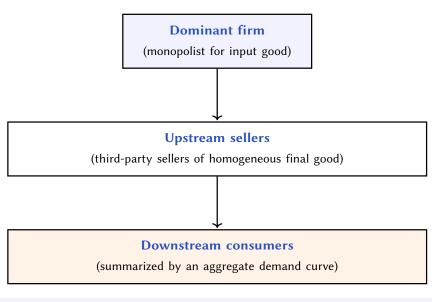
Framework

Analysis

Application #1

Application #2

Overview of model



There is a unit mass of risk-neutral sellers with unit input demand + quasilinear utility.

Sellers differ in types θ : they costlessly convert 1 unit of input into θ units of final good.

Introduction

Framework

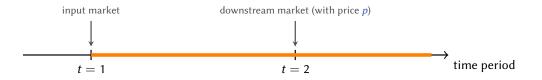
Analysis

Application #1

Application #2

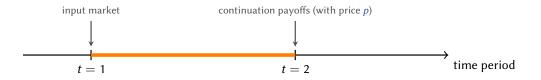
There is a unit mass of risk-neutral sellers with unit input demand + quasilinear utility.

Sellers differ in types θ : they costlessly convert 1 unit of input into θ units of final good.



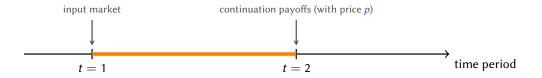
There is a unit mass of risk-neutral sellers with unit input demand + quasilinear utility.

Sellers differ in types θ : they costlessly convert 1 unit of input into θ units of final good.



There is a unit mass of risk-neutral sellers with unit input demand + quasilinear utility.

Sellers differ in types θ : they costlessly convert 1 unit of input into θ units of final good.



Continuation payoffs (with price *p* per unit of final good):

 $\begin{cases} v_0(p;\theta) = 0 & \text{if <u>not</u> allocated input,} \\ v_1(p;\theta) = \theta p & \text{if } allocated input.} \end{cases}$

Introduction

Framework

Analysis Application #1

Application #2

Mapping from framework: mechanism designer

There is a dominant firm who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that seller receives input; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that seller makes.

Introduction Framework Analysis OCONO

Application #2

Mapping from framework: mechanism designer

There is a dominant firm who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that seller receives input; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that seller makes.

Given *p*, the payoff of the dominant firm is

$$\Pi(x;p) = \int_{\underline{\theta}}^{\overline{\theta}} \left[\theta - \frac{1 - F(\theta)}{f(\theta)} \right] px(\theta) \, \mathrm{d}F(\theta).$$

Key assumption (A): Π is an affine functional of *x*.

Introduction

Framework

Analysis

Application #1

Application #2

Mapping from framework: downstream market

The price *p* in the downstream market depends on the mechanism (x, t) through

$$D(p) = Q_0 + \int_{\overline{ heta}}^{\overline{ heta}} heta x(heta) \, \mathrm{d}F(heta).$$

Introduction

Framework

Analysis Application #1

Application #2

Discussion

7

Mapping from framework: downstream market

The price p in the downstream market depends on the mechanism (x, t) through

$$D(p) = Q_0 + \int_{\underline{ heta}}^{\overline{ heta}} heta x(heta) \, \mathrm{d}F(heta).$$

Idea:

- Demand for final good is inelastic and captured by downward sloping demand curve D(p).
- More productive sellers have higher WTP for input, but drive down downstream price more.

Mapping from framework: downstream market

The price p in the downstream market depends on the mechanism (x, t) through

$$D(p) = Q_0 + \int_{\underline{ heta}}^{\overline{ heta}} heta x(heta) \, \mathrm{d}F(heta).$$

Idea:

- Demand for final good is inelastic and captured by downward sloping demand curve D(p).
- More productive sellers have higher WTP for input, but drive down downstream price more.

Key assumption (B): total supply of final good (RHS) is an affine functional of *x*.

Introduction

Framework

Analysis Application #1

Application #2

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

Introduction

Framework

Analysis

Application #1

Application #2

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

Direct and indirect effects (as defined earlier) is not useful here as $\Pi(0; p) = \Pi(0; p_0) = 0$.

But rationing can be optimal to trade off:

- **#1.** total revenue in the downstream market; and
- #2. total information rents made by upstream sellers ("cost of double marginalization").

Introduction Framework Analysis Application #1 Application #2 Discussion

8

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

Direct and indirect effects (as defined earlier) is not useful here as $\Pi(0; p) = \Pi(0; p_0) = 0$.

But rationing can be optimal to trade off:

- **#1.** total revenue in the downstream market; and
- #2. total information rents made by upstream sellers ("cost of double marginalization").

Exercise: rationing is not optimal if $\frac{1-F(\theta)}{\theta f(\theta)}$ is decreasing in θ .

Introduction

Framework Analysis

Application #1

Application #2

Application #2: Public Option

based on Kang (2023)

Introduction

Framework

Analysis

Application #1

Application #2

Discussion

9

- Governments often redistribute by providing public alternatives to goods sold in private markets, many of which are allocated at prices below market-clearing levels.
 - For example, public housing programs allow eligible individuals to rent affordable housing units at lower prices relative to private apartments of similar quality.
 - This results in excess demand: in the United States, 1.6 million households were on a public housing waitlist in 2012 (Collinson et al., 2016).

Introduction

Framework

Analysis Application #1

Application #2

- Governments often redistribute by providing public alternatives to goods sold in private markets, many of which are allocated at prices below market-clearing levels.
 - For example, public housing programs allow eligible individuals to rent affordable housing units at lower prices relative to private apartments of similar quality.
 - This results in excess demand: in the United States, 1.6 million households were on a public housing waitlist in 2012 (Collinson et al., 2016).
- Policymakers have cited short-run constraints—such as limited funding and insufficient stock of public housing—as justification for rationing public assistance.
 - Recent theoretical work has confirmed that rationing can be optimal when these constraints are present (Akbarpour (r) al., 2022).

Motivation

- Governments often redistribute by providing public alternatives to goods sold in private markets, many of which are allocated at prices below market-clearing levels.
 - For example, public housing programs allow eligible individuals to rent affordable housing units at lower prices relative to private apartments of similar quality.
 - This results in excess demand: in the United States, 1.6 million households were on a public housing waitlist in 2012 (Collinson et al., 2016).
- Policymakers have cited short-run constraints—such as limited funding and insufficient stock of public housing—as justification for rationing public assistance.
 - Recent theoretical work has confirmed that rationing can be optimal when these constraints are present (Akbarpour (r) al., 2022).

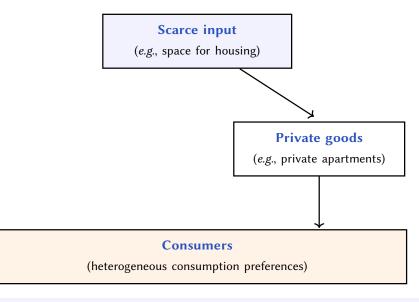
Question: Can rationing be optimal in the long run and, if so, why?

Introduction

Framework

Analysis Application #1

Application #2



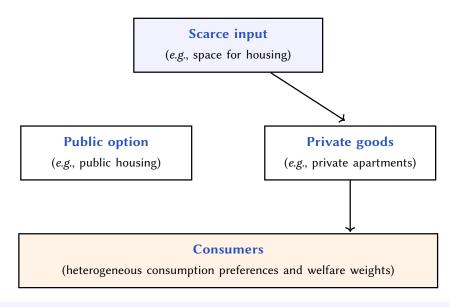
Introduction

Framework

Application #1

Analysis

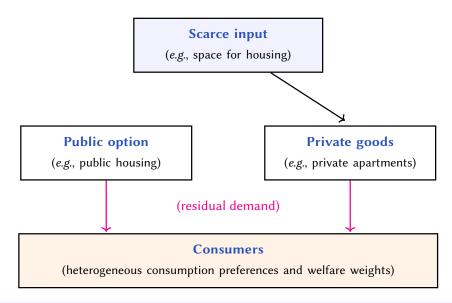
Application #2



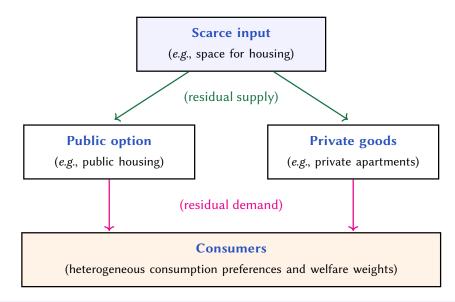
Introduction Framework Analysis Applic

Application #1

Application #2



Introduction Framework Analysis Application #1 Application #2 Discussion



Introduction Framework Analysis Application #1 Application #2 Discussion

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

Consumers differ in types θ , which determine their preferences over size q: $u(q, \theta)$.

Introduction

Framework

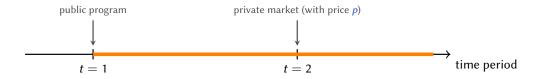
Analysis

Application #1

Application #2

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

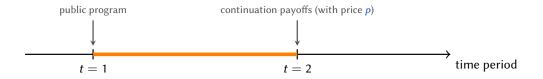
Consumers differ in types θ , which determine their preferences over size q: $u(q, \theta)$.



Introduction Framework Analysis occoso Application #1 Application #2 Discussion

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

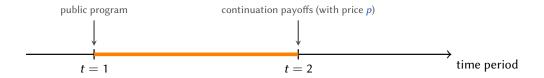
Consumers differ in types θ , which determine their preferences over size q: $u(q, \theta)$.



Introduction Framework Analysis Application #1 Application #2 Discussion

There is a unit mass of risk-neutral consumers with unit demand + quasilinear utility.

Consumers differ in types θ , which determine their preferences over size q: $u(q, \theta)$.



Continuation payoffs (with price *p* per unit size):

 $\begin{cases} v_0(p;\theta) = \max_{q \in \mathbb{R}_+} [u(q,\theta) - pq] & \text{if <u>not</u> allocated a public housing unit,} \\ v_1(p;\theta) = u(q_{\text{public}},\theta) & \text{if allocated a public housing unit.} \end{cases}$

Introduction

Framework

Analysis Application #1

Application #2

There is a policymaker who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives public; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Introduction

Framework

Analysis

Application #1

Application #2

There is a policymaker who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives public; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Given *p*, the payoff of the policymaker is

$$\Pi(x,t;p) = \int_{\underline{\theta}}^{\overline{\theta}} \omega(\theta) \{ u(q_{\text{public}},\theta)x(\theta) + v_0(p;\theta) [1-x(\theta)] - t(\theta) \} \ \mathrm{d}F(\theta) + \int_{\underline{\theta}}^{\overline{\theta}} [t(\theta) - pq_{\text{public}}x(\theta)] \ \mathrm{d}F(\theta) + \Pi_0(p).$$

Introduction

Framework

Analysis Application #1

Application #2

There is a policymaker who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives public; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Given *p*, the payoff of the policymaker is

$$\Pi(x, t; p) = \int_{\underline{\theta}}^{\overline{\theta}} \omega(\theta) \{ u(q_{\text{public}}, \theta) x(\theta) + v_0(p; \theta) [1 - x(\theta)] - t(\theta) \} dF(\theta)$$

+
$$\int_{\underline{\theta}}^{\overline{\theta}} [t(\theta) - pq_{\text{public}} x(\theta)] dF(\theta) + \Pi_0(p).$$

Introduction

Framework

Analysis Application #1

Application #2

There is a policymaker who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives public; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Given *p*, the payoff of the policymaker is

$$\Pi(x,t;p) = \int_{\underline{\theta}}^{\overline{\theta}} \omega(\theta) \{ u(q_{\text{public}},\theta)x(\theta) + v_0(p;\theta) [1-x(\theta)] - t(\theta) \} \, \mathrm{d}F(\theta)$$
$$+ \int_{\underline{\theta}}^{\overline{\theta}} [t(\theta) - pq_{\text{public}}x(\theta)] \, \mathrm{d}F(\theta) + \Pi_0(p).$$

Introduction

Framework

Analysis Application #1

Application #2

There is a policymaker who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives public; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Given *p*, the payoff of the policymaker is

$$\Pi(x,t;p) = \int_{\underline{\theta}}^{\overline{\theta}} \omega(\theta) \{ u(q_{\text{public}},\theta)x(\theta) + v_0(p;\theta) [1-x(\theta)] - t(\theta) \} \, \mathrm{d}F(\theta)$$
$$+ \int_{\underline{\theta}}^{\overline{\theta}} [t(\theta) - pq_{\text{public}}x(\theta)] \, \mathrm{d}F(\theta) + \Pi_0(p).$$

Introduction

Framework

Analysis Application #1

Application #2

There is a policymaker who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives public; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Given *p*, the payoff of the policymaker is

$$\Pi(x,t;p) = \int_{\underline{\theta}}^{\overline{\theta}} \omega(\theta) \{ u(q_{\text{public}},\theta)x(\theta) + v_0(p;\theta) [1-x(\theta)] - t(\theta) \} dF(\theta)$$

+
$$\int_{\underline{\theta}}^{\overline{\theta}} [t(\theta) - pq_{\text{public}}x(\theta)] dF(\theta) + \Pi_0(p).$$

Introduction

Framework

Analysis Application #1

Application #2

There is a policymaker who chooses a direct mechanism (x, t), consisting of:

- an allocation function $x : [\underline{\theta}, \overline{\theta}] \to [0, 1]$, where $x(\theta)$ = prob. that consumer receives public; and
- a payment function $t : [\underline{\theta}, \overline{\theta}] \to \mathbb{R}$, where $t(\theta)$ = expected payment that consumer makes.

Given *p*, the payoff of the policymaker is

$$\Pi(x,t;p) = \int_{\underline{\theta}}^{\overline{\theta}} \omega(\theta) \{ u(q_{\text{public}},\theta)x(\theta) + v_0(p;\theta) [1-x(\theta)] - t(\theta) \} \, \mathrm{d}F(\theta)$$
$$+ \int_{\underline{\theta}}^{\overline{\theta}} [t(\theta) - pq_{\text{public}}x(\theta)] \, \mathrm{d}F(\theta) + \Pi_0(p).$$

Key assumption (A): Π can be written as an affine functional of *x*.

Introduction

Framework

Analysis Application #1

Application #2

Mapping from framework: private market

The price *p* in the private market depends on the mechanism (x, t) through

$$S(p) = \int_{\underline{\theta}}^{\overline{\theta}} \left\{ \underbrace{q_{\text{public}} x(\theta)}_{\text{public demand}} + \underbrace{D(p; \theta) \left[1 - x(\theta)\right]}_{\text{private demand}} \right\} dF(\theta),$$

where $D(p; \theta) \in \arg \max_{q \in \mathbb{R}_+} [u(q, \theta) - pq]$.

Introduction

Framework

Analysis

Application #1

Application #2

Discussion

Mapping from framework: private market

The price p in the private market depends on the mechanism (x, t) through

$$S(p) = \int_{\underline{\theta}}^{\overline{\theta}} \left\{ \underbrace{q_{\text{public}} x(\theta)}_{\text{public demand}} + \underbrace{D(p; \theta) \left[1 - x(\theta)\right]}_{\text{private demand}} \right\} dF(\theta),$$

where $D(p; \theta) \in \arg\max_{q \in \mathbb{R}_+} [u(q, \theta) - pq].$

Idea:

- Space for housing is scarce; its supply is captured by upward sloping supply curve S(p).
- Public housing units potentially crowd out private apartments and drive up price of space.

Introduction Framework Analysis Application #1 Application #2 Discussion 14

Mapping from framework: private market

The price p in the private market depends on the mechanism (x, t) through

$$S(p) = \int_{\underline{\theta}}^{\overline{\theta}} \left\{ \underbrace{q_{\text{public}} x(\theta)}_{\text{public demand}} + \underbrace{D(p; \theta) \left[1 - x(\theta)\right]}_{\text{private demand}} \right\} dF(\theta),$$

where $D(p; \theta) \in \arg \max_{q \in \mathbb{R}_+} [u(q, \theta) - pq].$

Idea:

- Space for housing is scarce; its supply is captured by upward sloping supply curve S(p).
- Public housing units potentially crowd out private apartments and drive up price of space.

Key assumption (B): total demand for space (RHS) is an affine functional of x.

Introduction

Framework

Analysis Application #1

Application #2

Implications of incentive constraints

Proposition 1. For any incentive-compatible mechanism (x, t), the probability of receiving the public option is quasiconcave in θ .

▶ **Proof**: allocation probability must be increasing in $\eta(\theta; p) = u(q_{\text{public}}, \theta) - v_0(p; \theta)$.

Introduction

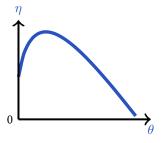
Framework

Analysis

Application #1

Application #2

▶ **Proof**: allocation probability must be increasing in $\eta(\theta; p) = u(q_{\text{public}}, \theta) - v_0(p; \theta)$.



Introduction

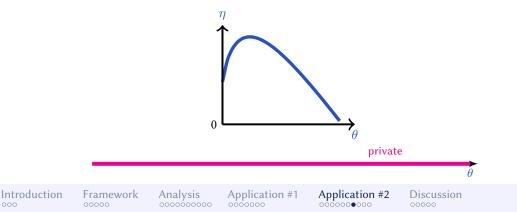
Framework

Analysis Ap

Application #1 Application #2

#2 Discussion

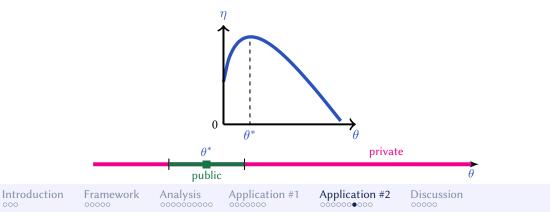
▶ **Proof**: allocation probability must be increasing in $\eta(\theta; p) = u(q_{\text{public}}, \theta) - v_0(p; \theta)$.



▶ **Proof**: allocation probability must be increasing in $\eta(\theta; p) = u(q_{\text{public}}, \theta) - v_0(p; \theta)$.



▶ **Proof**: allocation probability must be increasing in $\eta(\theta; p) = u(q_{\text{public}}, \theta) - v_0(p; \theta)$.



Optimal mechanism

Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

Introduction

Framework

Analysis

Application #1

Application #2

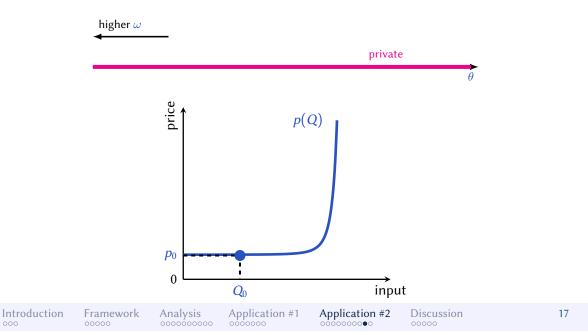
Optimal mechanism

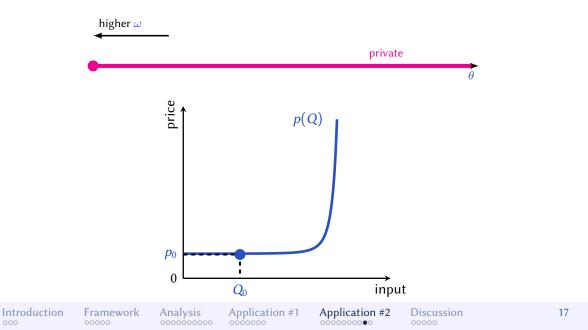
Main theorem. There exists an optimal mechanism (x^*, t^*) that is a menu of at most two prices; that is, im $x^* \subseteq \{0, \pi, 1\}$ for some $0 < \pi < 1$.

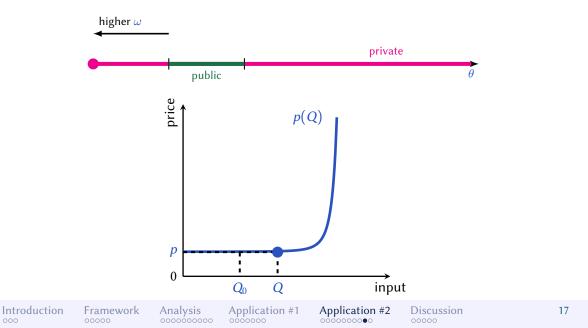
Thus rationing can be optimal in the long run to trade off direct and indirect effects.

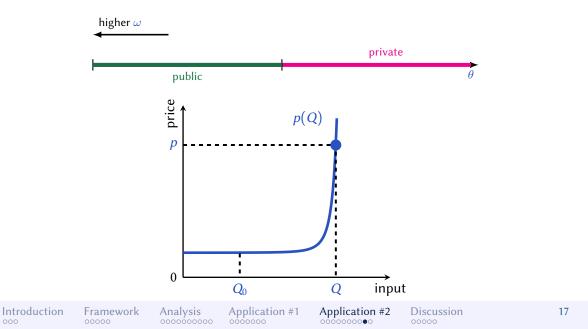
- **Direct effect:** $\Pi(x; p) \Pi(0; p)$ measures the value due to screening.
- ▶ Indirect effect: $\Pi(0; p) \Pi(0; p_0)$ measures the value due to pecuniary externalities.

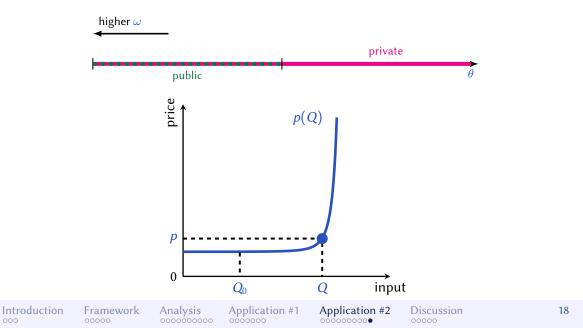
Introduction Framework Analysis Application #1 Application #2 Discussion











Discussion

Introduction

Framework

Analysis

Application #1

Application #2

Discussion

Extensions

Many assumptions can be relaxed:

Unit demand/supply.

Agents need not have unit demand/supply (e.g., Kang and Muir, 2022).

Introduction

Framework

Analysis

Application #1

Application #2

Extensions

Many assumptions can be relaxed:

Unit demand/supply.

Agents need not have unit demand/supply (e.g., Kang and Muir, 2022).

• Key assumptions (A) and (B).

Objective and constraint(s) need not be affine in x (e.g., Kang, 2022).

Introduction

Framework

Analysis Application #1

Application #2

Extensions

Many assumptions can be relaxed:

Unit demand/supply.

Agents need not have unit demand/supply (e.g., Kang and Muir, 2022).

• Key assumptions (A) and (B).

Objective and constraint(s) need not be affine in x (e.g., Kang, 2022).

Market structure assumptions.

Aftermarket need not be perfectly competitive (e.g., Kang, 2023).

Introduction

Framework

Analysis

Application #1

Application #2

Takeaway #1: equilibrium effects are important in many settings

Trade-offs in other economic problems can be understood via direct and indirect effects.

Problem	Instruments	Indirect feedback
contracting with a downstream market	allocation of input	price of final good
edistribution with a private market	allocation of public option	price of input good

Introduction

Framework

Application #100000000

Analysis

Application #2

Takeaway #1: equilibrium effects are important in many settings

Trade-offs in other economic problems can be understood via direct and indirect effects.

Problem	Instruments	put price of final good	
contracting with a downstream market	allocation of input		
redistribution with a private market	allocation of public option		
indirect regulation of externalities (Kang, 2022)	nonlinear taxes/subsidies	total externality in market	

Introduction

Framework

Analysis

Application #1

Application #2

Takeaway #1: equilibrium effects are important in many settings

Trade-offs in other economic problems can be understood via direct and indirect effects.

Problem	Instruments	Indirect feedback	
contracting with a downstream market	allocation of input	price of final good	
redistribution with a private market	allocation of public option	price of input good	
indirect regulation of externalities (Kang, 2022)	nonlinear taxes/subsidies	total externality in market	

Other problems: adverse selection, imperfect competition, costly search, market frictions...

Other instruments: taxes/subsidies on multiple goods, price controls, product specification regulation...

Introduction

Framework

Analysis Application #1

Application #2

1 #2 Discussion

Before this research program, the common wisdom was:

Introduction

Framework

Analysis

Application #1

Application #2

Discussion

Before this research program, the common wisdom was:

"Rationing arises from exogenous constraints (e.g., capacity and budget constraints)."

Introduction

Framework

Analysis

Application #1

Application #2

Before this research program, the common wisdom was:

- "Rationing arises from exogenous constraints (e.g., capacity and budget constraints)."
- "Rationing arises only for unusual distributions; 'standard' problems don't require it."

Introduction

Framework

Analysis Application #1

Application #2

Before this research program, the common wisdom was:

- "Rationing arises from exogenous constraints (e.g., capacity and budget constraints)."
- "Rationing arises only for unusual distributions; 'standard' problems don't require it."

Now: equilibrium effects can necessitate optimal rationing.

Introduction

Framework

Analysis Application #1

Application #2

Conclusion

This tutorial: an approach for mechanism design problems with equilibrium effects.

- This approach involves (only slightly) modifying existing mechanism design tools.
- Equilibrium effects are important; can lead to new insights on optimal mechanisms.
- Many problems untouched; many potentially exciting and new areas for research!

Introduction Framework Analysis Application #1 Application #2 Discussion

References

- AKBARPOUR, M. (P E. BUDISH (P P. DWORCZAK (P S. D. KOMINERS (2021): "An Economic Framework for Vaccine Prioritization," *Working paper.*
- Аквакроик, М. (r) P. Dworczak (r) S. D. Kominers (2022): "Redistributive Allocation Mechanisms," *Working paper.*
- COLLINSON, R., I. G. ELLEN, AND J. LUDWIG (2016): "Low-Income Housing Policy," in *Economics of Means-Tested Transfer Programs in the United States* ed. by Moffitt, R. A. Volume 2, Chicago, IL: University of Chicago Press, Chap. 2, 59–126.
- CONDORELLI, D. (2013): "Market and Non-Market Mechanisms for the Optimal Allocation of Scarce Resources," *Games and Economic Behavior*, 82, 582–591.
- Dworczak, P. (r) S. D. Kominers (r) M. Akbarpour (2021): "Redistribution Through Markets," *Econometrica*, 89, 1665–1698.
- KANG, Z. Y. (2022): "Optimal Indirect Regulation of Externalities," Working paper.

References

References

- (2023): "The Public Option and Optimal Redistribution," *Working paper*.
- KANG, Z. Y., AND E. V. MUIR (2022): "Contracting and Vertical Control by a Dominant Platform," *Working paper.*
- LOERTSCHER, S., AND E. V. MUIR (2022): "Monopoly Pricing, Optimal Rationing, and Resale," *Journal of Political Economy*, 130, 566–635.
- PAI, M., AND P. STRACK (2022): "Taxing Externalities Without Hurting the Poor," Working paper.