Optimal Indirect Regulation of Externalities

Zi Yang Kang

Harvard University

Motivation

Policymakers often employ "non-market" policies, such as price and quantity controls, to regulate goods that cause externalities.

Motivation

Policymakers often employ "non-market" policies, such as price and quantity controls, to regulate goods that cause externalities.

Examples:

- ▶ bans (e.g., sale/manufacture of psychoactive drugs) and mandates (e.g., vaccines);
- price restrictions (e.g., minimum unit pricing laws for alcohol);
- quantity restrictions (e.g., one-handgun-a-month laws).

Motivation

Policymakers often employ "non-market" policies, such as price and quantity controls, to regulate goods that cause externalities.

Examples:

- ▶ bans (e.g., sale/manufacture of psychoactive drugs) and mandates (e.g., vaccines);
- price restrictions (e.g., minimum unit pricing laws for alcohol);
- quantity restrictions (e.g., one-handgun-a-month laws).

Why don't policymakers set a Pigouvian tax/subsidy?

- ▶ It is often infeasible to measure how much externality each consumer generates.
- Instead, policymakers indirectly regulate the externality by regulating the good.

This paper

Observation:

▶ Unlike a Pigouvian tax, any indirect policy generates deadweight loss.

This paper

Observation:

Unlike a Pigouvian tax, any indirect policy generates deadweight loss.

Questions:

- #1. (Policy evaluation) How much deadweight loss does a given policy generate?
- **#2.** (*Policy design*) What is the optimal policy to indirectly regulate externalities?

This paper

Observation:

Unlike a Pigouvian tax, any indirect policy generates deadweight loss.

Questions:

- #1. (Policy evaluation) How much deadweight loss does a given policy generate?
- **#2.** (*Policy design*) What is the optimal policy to indirectly regulate externalities?

This paper: develops approach that combines sufficient statistics + mechanism design.

There is a unit mass of risk-neutral consumers in the market for a homogeneous good. The good is produced competitively at a constant marginal cost, c>0.

- There is a unit mass of risk-neutral consumers in the market for a homogeneous good. The good is produced competitively at a constant marginal cost, c > 0.
- Consumption produces heterogeneous amount of externality that cannot be measured. Consumers differ in θ (consumption type) and ξ (externality type).

- There is a unit mass of risk-neutral consumers in the market for a homogeneous good. The good is produced competitively at a constant marginal cost, c > 0.
- Consumption produces heterogeneous amount of externality that cannot be measured. Consumers differ in θ (consumption type) and ξ (externality type).
 - Consumption: derives utility $\theta v(q)$ from consuming $q \in [0, A]$ units of the good. Assume $v : [0, A] \to \mathbb{R}$ is non-decreasing and strictly concave; e.g., $v(q) = Aq - \frac{1}{2}q^2$.

- There is a unit mass of risk-neutral consumers in the market for a homogeneous good. The good is produced competitively at a constant marginal cost, c > 0.
- Consumption produces heterogeneous amount of externality that cannot be measured. Consumers differ in θ (consumption type) and ξ (externality type).
 - Consumption: derives utility $\theta v(q)$ from consuming $q \in [0, A]$ units of the good. Assume $v : [0, A] \to \mathbb{R}$ is non-decreasing and strictly concave; e.g., $v(q) = Aq - \frac{1}{2}q^2$.
 - Externality: produces ξ units of externality per unit of the good consumed.

- There is a unit mass of risk-neutral consumers in the market for a homogeneous good. The good is produced competitively at a constant marginal cost, c > 0.
- Consumption produces heterogeneous amount of externality that cannot be measured. Consumers differ in θ (consumption type) and ξ (externality type).
 - Consumption: derives utility $\theta v(q)$ from consuming $q \in [0, A]$ units of the good. Assume $v : [0, A] \to \mathbb{R}$ is non-decreasing and strictly concave; e.g., $v(q) = Aq - \frac{1}{2}q^2$.
 - Externality: produces ξ units of externality per unit of the good consumed.
 - (θ, ξ) has joint CDF G, which is absolutely continuous and supported on $[\underline{\theta}, \overline{\theta}] \times [\underline{\xi}, \overline{\xi}]$.

- There is a unit mass of risk-neutral consumers in the market for a homogeneous good. The good is produced competitively at a constant marginal cost, c > 0.
- Consumption produces heterogeneous amount of externality that cannot be measured. Consumers differ in θ (consumption type) and ξ (externality type).
 - Consumption: derives utility $\theta v(q)$ from consuming $q \in [0, A]$ units of the good. Assume $v : [0, A] \to \mathbb{R}$ is non-decreasing and strictly concave; *e.g.*, $v(q) = Aq - \frac{1}{2}q^2$.
 - Externality: produces ξ units of externality per unit of the good consumed.
 - (θ, ξ) has joint CDF G, which is absolutely continuous and supported on $[\underline{\theta}, \overline{\theta}] \times [\underline{\xi}, \overline{\xi}]$.
- Assume consumer payoffs are additively separable in total externality:

$$\theta v(q(\theta,\xi)) - t(\theta,\xi) - E, \quad \text{where } E = \int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\xi}}^{\overline{\xi}} \xi q(\theta',\xi') \, \mathrm{d}G(\theta',\xi').$$

First-best benchmark

Suppose the externality ξ that each consumer produces can be measured. Then the FB outcome can be attained by setting a personalized **Pigouvian tax** of ξ .

• Under the Pigouvian tax, each consumer faces a marginal price of $c + \xi$ per unit.

First-best benchmark

▶ Suppose the externality ξ that each consumer produces can be measured.

Then the FB outcome can be attained by setting a personalized **Pigouvian tax** of ξ .

- ▶ Under the Pigouvian tax, each consumer faces a marginal price of $c + \xi$ per unit.
- **b** But measuring and directly taxing the externality ξ is often infeasible in practice:
 - psychoactive drug use;
 - vaccination;
 - alcohol consumption;
 - gun purchase.

Instead, policymakers indirectly regulate these externalities by taxing consumption.

- ▶ The social planner chooses a mechanism (q, t), consisting of:
 - an allocation function $q:[\underline{\theta},\overline{\theta}]\times[\xi,\overline{\xi}]\to[0,A]$; and
 - a payment function $t: [\underline{\theta}, \overline{\theta}] \times [\underline{\xi}, \overline{\xi}] \to \mathbb{R}$.

- ▶ The social planner chooses a mechanism (q, t), consisting of:
 - an allocation function $q:[\underline{\theta},\overline{\theta}]\times[\xi,\overline{\xi}]\to[0,A]$; and
 - a payment function $t: [\underline{\theta}, \overline{\theta}] \times [\xi, \overline{\xi}] \to \mathbb{R}$.
- ► The social planner maximizes total surplus:

$$\mathsf{TS} = \int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\xi}}^{\overline{\xi}} \left[\theta \nu (q(\theta, \xi)) - (c + \xi) \cdot q(\theta, \xi) \right] \, \mathsf{d}G(\theta, \xi).$$

- ▶ The social planner chooses a mechanism (q, t), consisting of:
 - an allocation function $q:[\underline{\theta},\overline{\theta}]\times[\xi,\overline{\xi}]\to[0,A]$; and
 - a payment function $t: [\underline{\theta}, \overline{\theta}] \times [\xi, \overline{\xi}] \to \mathbb{R}$.
- ► The social planner maximizes total surplus:

$$\mathsf{TS} = \int_{\underline{\theta}}^{\overline{\theta}} \int_{\xi}^{\overline{\xi}} \left[\theta v(q(\theta, \xi)) - (c + \xi) \cdot q(\theta, \xi) \right] \, \mathsf{d}G(\theta, \xi).$$

b By the revelation principle, restrict attention WLOG to incentive-compatible (q, t):

$$(\theta,\xi) \in \arg\max_{(\hat{\theta},\hat{\xi})} \left[\theta v(q(\hat{\theta},\hat{\xi})) - t(\hat{\theta},\hat{\xi}) - \int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\xi}}^{\overline{\xi}} \xi' q(\theta',\xi') \, dG(\theta',\xi') \right]. \tag{IC}$$

Given q, if there exists t such that (q, t) satisfies (IC), then q is implementable.

Lemma 1. Define

$$\mathcal{Q}:=\left\{q: [\underline{ heta}, \overline{ heta}]
ightarrow [0, A] \text{ is non-decreasing}
ight\}.$$

Then q is implementable only if there exists $\hat{q} \in \mathcal{Q}$ such that

$$q(\theta,\xi) = \hat{q}(\theta)$$
 for almost every $(\theta,\xi) \in [\underline{\theta},\overline{\theta}] \times [\underline{\xi},\overline{\xi}]$.

Lemma 1. Define

$$\mathcal{Q} := \left\{ q : [\underline{\theta}, \overline{\theta}] \to [0, A] \text{ is non-decreasing} \right\}.$$

Then q is implementable only if there exists $\hat{q} \in \mathcal{Q}$ such that

$$q(\theta,\xi) = \hat{q}(\theta)$$
 for almost every $(\theta,\xi) \in [\underline{\theta},\overline{\theta}] \times [\underline{\xi},\overline{\xi}]$.

Intuition: consumer payoffs don't depend on reported ξ , cannot be truthfully elicited.

Lemma 1. Define

$$\mathcal{Q} := \{q : [\underline{\theta}, \overline{\theta}] \to [0, A] \text{ is non-decreasing} \}.$$

Then q is implementable only if there exists $\hat{q} \in \mathcal{Q}$ such that

$$q(\theta, \xi) = \hat{q}(\theta)$$
 for almost every $(\theta, \xi) \in [\underline{\theta}, \overline{\theta}] \times [\xi, \overline{\xi}]$.

- **Intuition:** consumer payoffs don't depend on reported ξ , cannot be truthfully elicited.
- Implications:
 - **#1.** Solution to social planner's problem does not depend on whether consumers observe ξ .

Lemma 1. Define

$$\mathcal{Q} := \{q : [\underline{\theta}, \overline{\theta}] \to [0, A] \text{ is non-decreasing} \}.$$

Then q is implementable only if there exists $\hat{q} \in \mathcal{Q}$ such that

$$q(\theta, \xi) = \hat{q}(\theta)$$
 for almost every $(\theta, \xi) \in [\underline{\theta}, \overline{\theta}] \times [\underline{\xi}, \overline{\xi}]$.

- **Intuition:** consumer payoffs don't depend on reported ξ , cannot be truthfully elicited.
- **▶** Implications:
 - **#1.** Solution to social planner's problem does not depend on whether consumers observe ξ .
 - **#2.** Allows us to write q as function of only θ ; Q is set of implementable allocation functions.

Questions

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

Questions

- **#1.** What is the deadweight loss of any incentive-compatible mechanism (q, t)?
- **#2.** Given any subset $S \subset Q$ of implementable allocation functions, what is the allocation function $q^* \in S$ in that set that minimizes deadweight loss?

(If S = Q, the optimal allocation function q^* is the second-best allocation function.)

Illustration

10

Illustration with linear demand

Assumption. $v(q) = Aq - \frac{1}{2}q^2$, where $c + \overline{\xi} < \underline{\theta}A$ so that $q^{FB} \in (0, A)$ is interior.

Illustration with linear demand

Assumption. $v(q) = Aq - \frac{1}{2}q^2$, where $c + \overline{\xi} < \underline{\theta}A$ so that $q^{FB} \in (0, A)$ is interior.

Each consumer has an individual demand curve given by

$$D(p,\theta) = A - \frac{p}{\theta}.$$

- Simple way to capture continuous demand for homogeneous good.
- ► Can be viewed as a local approx. in the spirit of Harberger (1964).

$$\mathsf{DWL}(\theta,\xi) = \frac{1}{2} \times \left[q^{\mathsf{FB}}(\theta,\xi) - q(\theta,\xi) \right] \times \theta \left[q^{\mathsf{FB}}(\theta,\xi) - q(\theta,\xi) \right] = \frac{\theta}{2} \left[q^{\mathsf{FB}}(\theta,\xi) - q(\theta,\xi) \right]^2.$$

Proposition 1. For any incentive-compatible mechanism (q, t), the deadweight loss is equal to

$$\mathsf{DWL} = \int_{ heta}^{\overline{ heta}} \int_{\xi}^{\overline{\xi}} rac{ heta}{2} \left[q^{\mathsf{FB}}(heta, \xi) - q(heta)
ight]^2 \, \mathsf{d} \mathit{G}(heta, \xi).$$

Deadweight loss and regression

Question: What is the optimal linear tax τ ?

Deadweight loss and regression

Question: What is the optimal linear tax τ ?

Since $D(p,\theta) = A - p/\theta$, the set of allocation functions S that can be implemented by τ is

$$\mathcal{S} = \left\{ q \in \mathcal{Q} : q(\theta) = A - rac{c + au}{ heta} ext{ for } au \in \mathbb{R}_+
ight\}.$$

Question: What is the optimal linear tax τ ?

Since $D(p, \theta) = A - p/\theta$, the set of allocation functions S that can be implemented by τ is

$$S = \left\{ q \in \mathcal{Q} : q(\theta) = A - \frac{c + \tau}{\theta} \text{ for } \tau \in \mathbb{R}_+ \right\}.$$

$$\underbrace{A - \frac{c + \xi}{\theta}}_{=q^{\text{FB}}(\theta, \xi)} = \underbrace{A - \frac{c + \tau}{\theta}}_{=q(\theta) \in \mathcal{S}} + \varepsilon(\theta, \xi)$$

Question: What is the optimal linear tax τ ?

Since $D(p, \theta) = A - p/\theta$, the set of allocation functions S that can be implemented by τ is

$$\mathcal{S} = \left\{ q \in \mathcal{Q} : q(\theta) = A - \frac{c + \tau}{\theta} \text{ for } \tau \in \mathbb{R}_+ \right\}.$$

$$\underbrace{A - \frac{c + \xi}{\theta}}_{=q^{\text{FB}}(\theta, \xi)} = \underbrace{A - \frac{c + \tau}{\theta}}_{=q(\theta) \in \mathcal{S}} + \varepsilon(\theta, \xi)$$

$$\iff \frac{\xi}{\theta} = \tau \cdot \frac{1}{\theta} - \varepsilon(\theta, \xi).$$

Question: What is the optimal linear tax τ ?

Since $D(p, \theta) = A - p/\theta$, the set of allocation functions S that can be implemented by τ is

$$\mathcal{S} = \left\{ q \in \mathcal{Q} : q(\theta) = A - \frac{c + \tau}{\theta} \text{ for } \tau \in \mathbb{R}_+ \right\}.$$

$$\underbrace{A - \frac{c + \xi}{\theta}}_{=q^{\mathsf{FB}}(\theta, \xi)} = \underbrace{A - \frac{c + \tau}{\theta}}_{=q(\theta) \in \mathcal{S}} + \varepsilon(\theta, \xi)$$

$$\iff \frac{\xi}{\theta} = \tau \cdot \frac{1}{\theta} - \varepsilon(\theta, \xi).$$

Question: What is the optimal linear tax τ ?

Since $D(p, \theta) = A - p/\theta$, the set of allocation functions S that can be implemented by τ is

$$\mathcal{S} = \left\{ q \in \mathcal{Q} : q(\theta) = A - \frac{c + \tau}{\theta} \text{ for } \tau \in \mathbb{R}_+ \right\}.$$

#1. SSR (weighted by
$$\theta$$
)
$$= \int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\xi}}^{\overline{\xi}} \theta \left[q^{\text{FB}}(\theta, \xi) - q(\theta, \xi) \right]^2 dG(\theta, \xi)$$

$$= 2 \times \text{DWL}.$$

Question: What is the optimal linear tax τ ?

Since $D(p, \theta) = A - p/\theta$, the set of allocation functions S that can be implemented by τ is

$$\mathcal{S} = \left\{ q \in \mathcal{Q} : q(\theta) = A - rac{c + au}{ heta} ext{ for } au \in \mathbb{R}_+
ight\}.$$

Consider the **regression** of q^{FB} onto S:

#1. SSR (weighted by θ) $= \int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\xi}}^{\overline{\xi}} \theta \left[q^{\text{FB}}(\theta, \xi) - q(\theta, \xi) \right]^2 dG(\theta, \xi)$ $= 2 \times \text{DWL}.$

What if we allow nonlinear taxes?

The second-best allocation function q^{SB} is obtained by regressing q^{FB} on Q:

$$q^{\mathsf{FB}}(heta, \xi) = q(heta) + arepsilon(heta, \xi), \qquad q \in \mathcal{Q}.$$

What if we allow nonlinear taxes?

The second-best allocation function q^{SB} is obtained by regressing q^{FB} on Q:

$$q^{\mathsf{FB}}(heta, \xi) = q(heta) + \varepsilon(heta, \xi), \qquad q \in \mathcal{Q}.$$

Again, the regression loss function is half of the sum of squared distances, weighted by θ :

$$q^{\mathrm{SB}} \in \min_{q \in \mathcal{Q}} \underbrace{\int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\xi}}^{\overline{\xi}} \frac{\theta}{2} \left[q^{\mathrm{FB}}(\theta, \xi) - q(\theta) \right] \, \mathrm{d}G(\theta, \xi)}_{=\mathrm{DWL}}.$$

What if we allow nonlinear taxes?

The second-best allocation function q^{SB} is obtained by regressing q^{FB} on Q:

$$q^{\mathsf{FB}}(heta,\xi) = q(heta) + arepsilon(heta,\xi), \qquad q \in \mathcal{Q}.$$

Again, the regression loss function is half of the sum of squared distances, weighted by θ :

$$q^{\mathrm{SB}} \in \min_{q \in \mathcal{Q}} \underbrace{\int_{\underline{\theta}}^{\overline{\theta}} \int_{\underline{\xi}}^{\overline{\xi}} \frac{\theta}{2} \left[q^{\mathrm{FB}}(\theta, \xi) - q(\theta) \right] \, \mathrm{d}G(\theta, \xi)}_{=\mathrm{DWL}}.$$

Recall that $Q := \{q : [\underline{\theta}, \overline{\theta}] \to [0, A] \text{ is non-decreasing}\}.$

This means that q^{SB} is the **isotonic regression** of q^{FB} on θ .

Proposition 2. There is a unique optimal allocation function q^{SB} given by

$$q^{\mathrm{SB}}(\theta) = \left. \frac{\mathrm{d}}{\mathrm{d}s} \left(\mathsf{co} \int_{1-s}^{1} \mathbf{E} \left[q^{\mathrm{FB}}(\hat{\theta}, \xi) \, | \, \hat{\theta} = W^{-1}(z) \right] \, \mathrm{d}z \right) \right|_{s=1-W(\theta)}, W(\theta) = \frac{1}{\mathbf{E}[\theta]} \int_{\underline{\theta}}^{\theta} \int_{\underline{\xi}}^{\overline{\xi}} z g(z, \xi) \, \mathrm{d}z \, \mathrm{d}\xi.$$

Proposition 2. There is a unique optimal allocation function q^{SB} given by

$$q^{\mathrm{SB}}(\theta) = \left. \frac{\mathrm{d}}{\mathrm{d}s} \left(\mathrm{co} \int_{1-s}^{1} \mathbf{E} \left[q^{\mathrm{FB}}(\hat{\theta}, \xi) \, | \, \hat{\theta} = W^{-1}(z) \right] \, \mathrm{d}z \right) \right|_{s=1-W(\theta)}, W(\theta) = \frac{1}{\mathbf{E}[\theta]} \int_{\underline{\theta}}^{\theta} \int_{\underline{\xi}}^{\overline{\xi}} z g(z, \xi) \, \mathrm{d}z \, \mathrm{d}\xi.$$

Although construction of q^{SB} uses ironing (Myerson, 1981), it is different from other problems:

- In other problems, the MR curve (or equivalent) is ironed.
- ▶ Here, the (expected) first-best allocation function $\mathbf{E}[q^{FB}(\theta,\xi) \mid \theta]$ is being ironed.

Proposition 2. There is a unique optimal allocation function q^{SB} given by

$$q^{\mathrm{SB}}(\theta) = \left. \frac{\mathrm{d}}{\mathrm{d}s} \left(\mathrm{co} \int_{1-s}^{1} \mathbf{E} \left[q^{\mathrm{FB}}(\hat{\theta}, \xi) \, | \, \hat{\theta} = W^{-1}(z) \right] \, \mathrm{d}z \right) \right|_{s=1-W(\theta)}, W(\theta) = \frac{1}{\mathbf{E}[\theta]} \int_{\underline{\theta}}^{\theta} \int_{\underline{\xi}}^{\overline{\xi}} z g(z, \xi) \, \mathrm{d}z \, \mathrm{d}\xi.$$

Although construction of q^{SB} uses ironing (Myerson, 1981), it is different from other problems!

Proof idea: By Proposition 1, $q^{SB} = WLS$ projection (with weights equal to θ) of q^{FB} onto Q.

Technical step in paper: WLS projection operator is given by q^{SB} in statement of Proposition 2.

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

#2. Given any subset $S \subset Q$ of implementable allocation functions, what is the allocation function $q^* \in S$ in that set that minimizes deadweight loss?

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

The deadweight loss is equal to the weighted average distance between q^{FB} and q.

#2. Given any subset $S \subset Q$ of implementable allocation functions, what is the allocation function $q^* \in S$ in that set that minimizes deadweight loss?

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

The deadweight loss is equal to the weighted average distance between q^{FB} and q.

- **#2.** Given any subset $S \subset Q$ of implementable allocation functions, what is the allocation function $q^* \in S$ in that set that minimizes deadweight loss?
 - q^* is the "best-fit" allocation function from a regression (i.e., projection) of q^{FB} onto S.

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

The deadweight loss is equal to the weighted average distance between q^{FB} and q.

#2. Given any subset $S \subset Q$ of implementable allocation functions, what is the allocation function $q^* \in S$ in that set that minimizes deadweight loss?

 q^* is the "best-fit" allocation function from a regression (*i.e.*, projection) of q^{FB} onto S. (If S = Q, the second-best allocation q^{SB} can be determined via an isotonic regression.)

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

The deadweight loss is equal to the weighted average distance between q^{FB} and q.

#2. Given any subset $S \subset Q$ of implementable allocation functions, what is the allocation function $q^* \in S$ in that set that minimizes deadweight loss?

```
q^* is the "best-fit" allocation function from a regression (i.e., projection) of q^{FB} onto S. (If S = Q, the second-best allocation q^{SB} can be determined via an isotonic regression.)
```

The rest of this paper shows that regression approach also works for general demand, by: (i) generalizing regression loss function and (ii) characterizing resulting projection.

Conclusion

- ► This paper develops a **regression approach** to indirectly regulate externalities.
 - Deadweight loss is equal to the residual from the regression (i.e., regression loss).
 - Optimal indirect policy obtained by characterizing projection associated with regression.
- ► The results of this paper also...
 - show that "non-market" policies, such as price and quantity controls, can be optimal;
 - show how to implement allocations (nonlinear taxes can be derived via regression); and
 - have empirical relevance (e.g., regulation of automobile externalities via VMT taxation).

Conclusion

- ► This paper develops a **regression approach** to indirectly regulate externalities.
 - Deadweight loss is equal to the residual from the regression (i.e., regression loss).
 - Optimal indirect policy obtained by characterizing projection associated with regression.
- ► The results of this paper also...
 - show that "non-market" policies, such as price and quantity controls, can be optimal;
 - show how to implement allocations (nonlinear taxes can be derived via regression); and
 - have empirical relevance (e.g., regulation of automobile externalities via VMT taxation).

Thank you!

Questions/comments? zykang@cmsa.fas.harvard.edu

References

- DIAMOND, P. A. (1973): "Consumption Externalities and Imperfect Corrective Pricing," *Bell Journal of Economics and Management Science*, 526–538.
- Harberger, A. C. (1964): "The Measurement of Waste," *American Economic Review: Papers & Proceedings*, 54, 58–76.
- KNITTEL, C. R. AND R. SANDLER (2018): "The Welfare Impact of Second-Best Uniform-Pigouvian Taxation: Evidence from Transportation," *American Economic Journal: Economic Policy*, 10, 211–42.
- Myerson, R. B. (1981): "Optimal Auction Design," Mathematics of Operations Research, 6, 58–73.