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Motivation

Policymakers often employ “non-market” policies, such as price and quantity controls,

to regulate goods that cause externalities.

Examples:

▶ bans (e.g., sale/manufacture of psychoactive drugs) and mandates (e.g., vaccines);

▶ price restrictions (e.g., minimum unit pricing laws for alcohol);

▶ quantity restrictions (e.g., one-handgun-a-month laws).

Why don’t policymakers set a Pigouvian tax/subsidy?

▶ It is often infeasible to measure how much externality each consumer generates.

▶ Instead, policymakers indirectly regulate the externality by regulating the good.
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This paper

Observation:

▶ Unlike a Pigouvian tax, any indirect policy generates deadweight loss.

Questions:

#1. (Policy evaluation) How much deadweight loss does a given policy generate?

#2. (Policy design) What is the optimal policy to indirectly regulate externalities?

This paper: develops approach that combines sufficient statistics + mechanism design.
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Model

▶ There is a unit mass of risk-neutral consumers in the market for a homogeneous good.

The good is produced competitively at a constant marginal cost, c > 0.

▶ Consumption produces heterogeneous amount of externality that cannot be measured.

Consumers differ in θ (consumption type) and ξ (externality type).

– Consumption: derives utility θv(q) from consuming q ∈ [0,A] units of the good.

Assume v : [0,A] → R is non-decreasing and strictly concave; e.g., v(q) = Aq − 1

2
q2.

– Externality: produces ξ units of externality per unit of the good consumed.

(θ, ξ) has joint CDF G, which is absolutely continuous and supported on [θ, θ]× [ξ, ξ].

▶ Assume consumer payoffs are additively separable in total externality:

θv( q(θ, ξ)︸ ︷︷ ︸
quantity consumed

)− t(θ, ξ)︸ ︷︷ ︸
payment

− E︸︷︷︸
total externality

, where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

5



D
R
A
F
T

Model

▶ There is a unit mass of risk-neutral consumers in the market for a homogeneous good.

The good is produced competitively at a constant marginal cost, c > 0.

▶ Consumption produces heterogeneous amount of externality that cannot be measured.

Consumers differ in θ (consumption type) and ξ (externality type).

– Consumption: derives utility θv(q) from consuming q ∈ [0,A] units of the good.

Assume v : [0,A] → R is non-decreasing and strictly concave; e.g., v(q) = Aq − 1

2
q2.

– Externality: produces ξ units of externality per unit of the good consumed.

(θ, ξ) has joint CDF G, which is absolutely continuous and supported on [θ, θ]× [ξ, ξ].

▶ Assume consumer payoffs are additively separable in total externality:

θv( q(θ, ξ)︸ ︷︷ ︸
quantity consumed

)− t(θ, ξ)︸ ︷︷ ︸
payment

− E︸︷︷︸
total externality

, where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

5



D
R
A
F
T

Model

▶ There is a unit mass of risk-neutral consumers in the market for a homogeneous good.

The good is produced competitively at a constant marginal cost, c > 0.

▶ Consumption produces heterogeneous amount of externality that cannot be measured.

Consumers differ in θ (consumption type) and ξ (externality type).

– Consumption: derives utility θv(q) from consuming q ∈ [0,A] units of the good.

Assume v : [0,A] → R is non-decreasing and strictly concave; e.g., v(q) = Aq − 1

2
q2.

– Externality: produces ξ units of externality per unit of the good consumed.

(θ, ξ) has joint CDF G, which is absolutely continuous and supported on [θ, θ]× [ξ, ξ].

▶ Assume consumer payoffs are additively separable in total externality:

θv( q(θ, ξ)︸ ︷︷ ︸
quantity consumed

)− t(θ, ξ)︸ ︷︷ ︸
payment

− E︸︷︷︸
total externality

, where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

5



D
R
A
F
T

Model

▶ There is a unit mass of risk-neutral consumers in the market for a homogeneous good.

The good is produced competitively at a constant marginal cost, c > 0.

▶ Consumption produces heterogeneous amount of externality that cannot be measured.

Consumers differ in θ (consumption type) and ξ (externality type).

– Consumption: derives utility θv(q) from consuming q ∈ [0,A] units of the good.

Assume v : [0,A] → R is non-decreasing and strictly concave; e.g., v(q) = Aq − 1

2
q2.

– Externality: produces ξ units of externality per unit of the good consumed.

(θ, ξ) has joint CDF G, which is absolutely continuous and supported on [θ, θ]× [ξ, ξ].

▶ Assume consumer payoffs are additively separable in total externality:

θv( q(θ, ξ)︸ ︷︷ ︸
quantity consumed

)− t(θ, ξ)︸ ︷︷ ︸
payment

− E︸︷︷︸
total externality

, where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

5



D
R
A
F
T

Model

▶ There is a unit mass of risk-neutral consumers in the market for a homogeneous good.

The good is produced competitively at a constant marginal cost, c > 0.

▶ Consumption produces heterogeneous amount of externality that cannot be measured.

Consumers differ in θ (consumption type) and ξ (externality type).

– Consumption: derives utility θv(q) from consuming q ∈ [0,A] units of the good.

Assume v : [0,A] → R is non-decreasing and strictly concave; e.g., v(q) = Aq − 1

2
q2.

– Externality: produces ξ units of externality per unit of the good consumed.

(θ, ξ) has joint CDF G, which is absolutely continuous and supported on [θ, θ]× [ξ, ξ].

▶ Assume consumer payoffs are additively separable in total externality:

θv( q(θ, ξ)︸ ︷︷ ︸
quantity consumed

)− t(θ, ξ)︸ ︷︷ ︸
payment

− E︸︷︷︸
total externality

, where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

5



D
R
A
F
T

Model

▶ There is a unit mass of risk-neutral consumers in the market for a homogeneous good.

The good is produced competitively at a constant marginal cost, c > 0.

▶ Consumption produces heterogeneous amount of externality that cannot be measured.

Consumers differ in θ (consumption type) and ξ (externality type).

– Consumption: derives utility θv(q) from consuming q ∈ [0,A] units of the good.

Assume v : [0,A] → R is non-decreasing and strictly concave; e.g., v(q) = Aq − 1

2
q2.

– Externality: produces ξ units of externality per unit of the good consumed.

(θ, ξ) has joint CDF G, which is absolutely continuous and supported on [θ, θ]× [ξ, ξ].

▶ Assume consumer payoffs are additively separable in total externality:

θv( q(θ, ξ)︸ ︷︷ ︸
quantity consumed

)− t(θ, ξ)︸ ︷︷ ︸
payment

− E︸︷︷︸
total externality

, where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

5



D
R
A
F
T

First-best benchmark

▶ Suppose the externality ξ that each consumer produces can be measured.

Then the FB outcome can be attained by setting a personalized Pigouvian tax of ξ.

▶ Under the Pigouvian tax, each consumer faces a marginal price of c + ξ per unit.

▶ But measuring and directly taxing the externality ξ is often infeasible in practice:

– psychoactive drug use;

– vaccination;

– alcohol consumption;

– gun purchase.

Instead, policymakers indirectly regulate these externalities by taxing consumption.
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Social planner’s problem

▶ The social planner chooses a mechanism (q, t), consisting of:

– an allocation function q : [θ, θ]× [ξ, ξ] → [0,A]; and

– a payment function t : [θ, θ]× [ξ, ξ] → R.

▶ The social planner maximizes total surplus:

TS =

∫ θ

θ

∫ ξ

ξ

[θv(q(θ, ξ))− (c + ξ) · q(θ, ξ)] dG(θ, ξ).

▶ By the revelation principle, restrict attention WLOG to incentive-compatible (q, t):

(θ, ξ) ∈ argmax
(θ̂,ξ̂)

[
θv(q(θ̂, ξ̂))− t(θ̂, ξ̂)−

∫ θ

θ

∫ ξ

ξ

ξ′q(θ′, ξ′) dG(θ′, ξ′)

]
. (IC)

Given q, if there exists t such that (q, t) satisfies (IC), then q is implementable.
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Social planner’s problem

Lemma 1. Define

Q :=
{
q : [θ, θ] → [0,A] is non-decreasing

}
.

Then q is implementable only if there exists q̂ ∈ Q such that

q(θ, ξ) = q̂(θ) for almost every (θ, ξ) ∈ [θ, θ]× [ξ, ξ].

▶ Intuition: consumer payoffs don’t depend on reported ξ, cannot be truthfully elicited.

▶ Implications:

#1. Solution to social planner’s problem does not depend on whether consumers observe ξ.

#2. Allows us to write q as function of only θ; Q is set of implementable allocation functions.
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Questions

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

#2. Given any subset S ⊂ Q of implementable allocation functions, what is the allocation

function q∗ ∈ S in that set that minimizes deadweight loss?

(If S = Q, the optimal allocation function q∗ is the second-best allocation function.)
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Illustration with linear demand

Assumption. v(q) = Aq − 1

2
q2, where c + ξ < θA so that qFB ∈ (0,A) is interior.

▶ Each consumer has an individual

demand curve given by

D(p, θ) = A− p
θ
.

▶ Simple way to capture continuous

demand for homogeneous good.

▶ Can be viewed as a local approx. in

the spirit of Harberger (1964).

θA

A
0

quantity

price
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Deadweight loss

qFB(θ, ξ)

c + ξ

θ [A− q(θ)]

q(θ)

θA

A

SMC

0

quantity

D(p, θ) = A− p
θ

price
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Deadweight loss

qFB(θ, ξ)

c + ξ

θ [A− q(θ)]

q(θ)

θA

A

SMC

0

quantity

price

DWL(θ, ξ) =
1

2

×
[
qFB(θ, ξ)− q(θ, ξ)

]
× θ

[
qFB(θ, ξ)− q(θ, ξ)

]
=

θ

2

[
qFB(θ, ξ)− q(θ, ξ)

]
2

.

Proposition 1. For any incentive-compatible mechanism (q, t), the deadweight loss is equal to

DWL =

∫ θ

θ

∫ ξ

ξ

θ

2

[
qFB(θ, ξ)− q(θ)

]
2

dG(θ, ξ).
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Deadweight loss and regression

Question: What is the optimal linear tax τ?

Since D(p, θ) = A− p/θ, the set of allocation

functions S that can be implemented by τ is

S =

{
q ∈ Q : q(θ) = A− c + τ

θ
for τ ∈ R+

}
.

Consider the regression of qFB onto S :

A− c + ξ

θ︸ ︷︷ ︸
=qFB(θ,ξ)

= A− c + τ

θ︸ ︷︷ ︸
=q(θ)∈S

+ε(θ, ξ)

#1. SSR (weighted by θ)

=

∫ θ

θ

∫ ξ

ξ
θ
[
qFB(θ, ξ)− q(θ, ξ)

]
2

dG(θ, ξ)

= 2× DWL.

#2. The optimal linear tax is τ∗ =
E[ξ/θ]
E[1/θ]

.

; Cf. Diamond (1973).

0

1/θ

ξ/θ

gradient = τ∗

14
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ξ
θ
[
qFB(θ, ξ)− q(θ, ξ)

]
2

dG(θ, ξ)

= 2× DWL.

#2. The optimal linear tax is τ∗ =
E[ξ/θ]
E[1/θ]

.

; Cf. Diamond (1973).

0

1/θ

ξ/θ
gradient = τ∗
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What if we allow nonlinear taxes?

The second-best allocation function qSB is obtained by regressing qFB on Q:

qFB(θ, ξ) = q(θ) + ε(θ, ξ), q ∈ Q.

Again, the regression loss function is half of the sum of squared distances, weighted by θ:

qSB ∈ min
q∈Q

∫ θ

θ

∫ ξ

ξ

θ

2

[
qFB(θ, ξ)− q(θ)

]
dG(θ, ξ)︸ ︷︷ ︸

=DWL

.

Recall that Q :=
{
q : [θ, θ] → [0,A] is non-decreasing

}
.

This means that qSB is the isotonic regression of qFB on θ.
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Second-best allocation

0

θ

quantity

equal areas weighted by θ

E
[
qFB(θ, ξ) | θ

]

E
[
qFB(θ, ξ) | θ

]

qSB(θ)
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Second-best allocation

Proposition 2. There is a unique optimal allocation function qSB given by

qSB(θ) =
d

ds

(
co

∫
1

1−s
E
[
qFB(θ̂, ξ) | θ̂ = W−1(z)

]
dz

)∣∣∣∣
s=1−W(θ)

,W(θ) =
1

E[θ]

∫ θ

θ

∫ ξ

ξ

zg(z, ξ) dz dξ.

0

θ

quantity

equal areas weighted by θ

E
[
qFB(θ, ξ) | θ

]

qSB(θ)

Although construction of qSB uses ironing (Myerson, 1981), it is different from other problems:

Proof idea: By Proposition 1, qSB =WLS projection (with weights equal to θ) of qFB onto Q.

Technical step in paper: WLS projection operator is given by qSB in statement of Proposition 2.
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Takeaways from the case of linear demand

#1. What is the deadweight loss of any incentive-compatible mechanism (q, t)?

The deadweight loss is equal to the weighted average distance between qFB and q.

#2. Given any subset S ⊂ Q of implementable allocation functions, what is the allocation

function q∗ ∈ S in that set that minimizes deadweight loss?

q∗ is the “best-fit” allocation function from a regression (i.e., projection) of qFB onto S .

(If S = Q, the second-best allocation qSB can be determined via an isotonic regression.)

The rest of this paper shows that regression approach also works for general demand,

by: (i) generalizing regression loss function and (ii) characterizing resulting projection.
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Conclusion

▶ This paper develops a regression approach to indirectly regulate externalities.

– Deadweight loss is equal to the residual from the regression (i.e., regression loss).

– Optimal indirect policy obtained by characterizing projection associated with regression.

▶ The results of this paper also. . .

– show that “non-market” policies, such as price and quantity controls, can be optimal;

– show how to implement allocations (nonlinear taxes can be derived via regression); and

– have empirical relevance (e.g., regulation of automobile externalities via VMT taxation).

Thank you!

Questions/comments? zykang@cmsa.fas.harvard.edu
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