Optimal Indirect Regulation of Externalities

Zi Yang Kang

Harvard University



Motivation

Policymakers often employ “non-market” policies, such as price and quantity controls,

to regulate goods that cause externalities.




Motivation

Policymakers often employ “non-market” policies, such as price and quantity controls,

to regulate goods that cause externalities.

Examples:

» bans (e.g., sale/manufacture of psychoactive drugs) and mandates (e.g., vaccines);
» price restrictions (e.g., minimum unit pricing laws for alcohol);

> quantity restrictions (e.g., one-handgun-a-month laws).



Motivation

Policymakers often employ “non-market” policies, such as price and quantity controls,

to regulate goods that cause externalities.

Examples:

» bans (e.g., sale/manufacture of psychoactive drugs) and mandates (e.g., vaccines);
» price restrictions (e.g., minimum unit pricing laws for alcohol);

> quantity restrictions (e.g., one-handgun-a-month laws).

Why don’t policymakers set a Pigouvian tax/subsidy?

» |t is often infeasible to measure how much externality each consumer generates.

» Instead, policymakers indirectly regulate the externality by regulating the good.
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This paper

Observation:
» Unlike a Pigouvian tax, any indirect policy generates deadweight loss.
Questions:

#1. (Policy evaluation) How much deadweight loss does a given policy generate?

#2. (Policy design) What is the optimal policy to indirectly regulate externalities?

This paper: develops approach that combines sufficient statistics + mechanism design. ]
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Model

» There is a unit mass of risk-neutral consumers in the market for a homogeneous good.

The good is produced competitively at a constant marginal cost, ¢ > 0.

» Consumption produces heterogeneous amount of externality that cannot be measured.

Consumers differ in 6 (consumption type) and ¢ (externality type).

— Consumption: derives utility #v(q) from consuming g € [0, A] units of the good.

Assume v : [0, A] — IR is non-decreasing and strictly concave; e.g., v(q) = Aq — 3¢~

- Externality: produces £ units of externality per unit of the good consumed.

(6,€) has joint CDF G, which is absolutely continuous and supported on [0, 6] x [¢, £].

» Assume consumer payoffs are additively separable in total externality:

0 €
0 q0.6) )—t(0.6)~ E . whereE = / /g £q(0/,€) dG(0,€').

quantity consumed payment  total externality
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» Suppose the externality ¢ that each consumer produces can be measured.

Then the FB outcome can be attained by setting a personalized Pigouvian tax of &.

» Under the Pigouvian tax, each consumer faces a marginal price of ¢ + £ per unit.

» But measuring and directly taxing the externality ¢ is often infeasible in practice:

psychoactive drug use;

— vaccination;

alcohol consumption;

- gun purchase.

Instead, policymakers indirectly regulate these externalities by taxing consumption.
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» The social planner chooses a mechanism (g, t), consisting of:

— an allocation function q : [0, 6] x [£,£] — [0, A]; and
- apayment function t : [, 6] x €, § — R

» The social planner maximizes total surplus:

8 €
TS:/ / [0v(q(0,€)) — (c+€) - q(0.€)] dG(0,¢).
Jo Je

» By the revelation principle, restrict attention WLOG to incentive-compatible (g, t):

g
(6,€)  arg max [Mq(e,f))—t(e,s)— Iy £’q(9’,£’)d0(9’7§’)1- (1C)
(0,6) 9 JE

Given g, if there exists t such that (g, t) satisfies (IC), then g is implementable.
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Social planner’s problem

Lemma 1. Define
Q:={q:[0,6] — [0,A] is non-decreasing } .

Then g is implementable only if there exists § € O such that

q(0,€) = g(#) for almost every (6, &) € [6, 0] x €, £].

» Intuition: consumer payoffs don’t depend on reported &, cannot be truthfully elicited.
» Implications:

#1. Solution to social planner’s problem does not depend on whether consumers observe £.

#2. Allows us to write q as function of only 6; Q is set of implementable allocation functions.
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Questions

#1. What is the deadweight loss of any incentive-compatible mechanism (g, t)?

#2. Given any subset S C O of implementable allocation functions, what is the allocation

function ¢* € S in that set that minimizes deadweight loss?

(If S = 9, the optimal allocation function ¢* is the second-best allocation function.)
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Illustration with linear demand

Assumption. v(q) = Aq— 1¢%, where c + £ < OA so that ¢"® € (0, A) is interior. ]

» Each consumer has an individual price

demand curve given by t

D(p.0)=A—">.
0 6A

> Simple way to capture continuous

demand for homogeneous good.
» Can be viewed as a local approx. in

the spirit of Harberger (1964). 0

A qu;ntity
11
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Deadweight loss

price
A

A

c+€

SMC

0[A—q(0)]

4°(0.¢) q) A quantity

o100~ a0,

DWL(6,&) = % x [¢(0,€) — q(9,6)] x 0 [¢°(8,€) — q(6,€)] =




Deadweight loss

price
A

A

c+€

SMC

01A — q(0)]

4°(0.¢) q) A quantity

Proposition 1. For any incentive-compatible mechanism (g, t), the deadweight loss is equal to

7 € ,
DWL—/@ /g g[qFB(ﬁ,ﬁ)—q(e)} dG(0, €).
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Question: What is the optimal linear tax 7?7

Since D(p,0) = A — p/0, the set of allocation

functions S that can be implemented by 7 is

C—ngorTeR+}.

S= {qe Q:q(f)=A—-
Consider the regression of ¢'® onto S:
c+§ c+T
_ > A
0 0
———
=¢%(0,¢) =q(0)es
3

= 627-%75(9,5).
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Deadweight loss and regression

Question: What is the optimal linear tax 7?7

Since D(p,0) = A — p/0, the set of allocation

functions S that can be implemented by 7 is

C—ngorTeR+}.

S= {qe Q:q(f)=A—-
Consider the regression of ¢"® onto S:
#1. SSR (weighted by 0)

0 rE
= /9 /5 0[¢(0.€) — q(0.6)] dG(6,€)

=2 x DWL.

E[$/6]
E[1/0]

#2. The optimal linear tax is 7" =

~ Cf. Diamond (1973).

gradient = 7

(] "
8 /g
s 4
.
(] .
.
o o0 (]
o, e
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What if we allow nonlinear taxes?

The second-best allocation function ¢°® is obtained by regressing g™ on O:

q°(0,€) = q(0) +(0,¢), qeQ.

Again, the regression loss function is half of the sum of squared distances, weighted by 0:

3
e [ [318°0.0 - )] a00.).

qeQ

=DWL

Recall that Q := {q: [#,0] — [0, A] is non-decreasing }.

This means that ¢°® is the isotonic regression of g™ on 6.
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Second-best allocation

Proposition 2. There is a unique optimal allocation function ¢°® given by

WO = g | 9 / ® 260, €) dz de.

s=1—W(0) [9] L

0= ¢ (w [ e[ 0.010-w@)] &)

quantity
A

equal areas weighted by 0

\ ¢ ()
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Second-best allocation

Proposition 2. There is a unique optimal allocation function ¢°® given by

W(0) = i/e'/gzg(z@) dz de.
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Although construction of ¢°® uses ironing (Myerson, 1981), it is different from other problems:

» In other problems, the MR curve (or equivalent) is ironed.

> Here, the (expected) first-best allocation function E[¢" (0, &) | 6] is being ironed.



Second-best allocation

Proposition 2. There is a unique optimal allocation function ¢°® given by

W(0) = i/e'/gzg(z@) dz de.

s=1—W(0) E[e] g

0= ¢ (w [ e[ 0.010-w@)] &)

Although construction of ¢°® uses ironing (Myerson, 1981), it is different from other problems!
Proof idea: By Proposition 1, ¢°® = WLS projection (with weights equal to ) of ¢'® onto O.

Technical step in paper: WLS projection operator is given by ¢°° in statement of Proposition 2.
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Takeaways from the case of linear demand

#1. What is the deadweight loss of any incentive-compatible mechanism (g, t)?

The deadweight loss is equal to the weighted average distance between g8 and q.

#2. Given any subset S C O of implementable allocation functions, what is the allocation

function ¢* € & in that set that minimizes deadweight loss?

q* is the “best-fit” allocation function from a regression (i.e., projection) of g'® onto S.

(If S = Q, the second-best allocation g°® can be determined via an isotonic regression.)

The rest of this paper shows that regression approach also works for general demand,

by: (i) generalizing regression loss function and (ii) characterizing resulting projection.
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— Deadweight loss is equal to the residual from the regression (i.e., regression loss).

- Optimal indirect policy obtained by characterizing projection associated with regression.

» The results of this paper also...
- show that “non-market” policies, such as price and quantity controls, can be optimal;
- show how to implement allocations (nonlinear taxes can be derived via regression); and

- have empirical relevance (e.g., regulation of automobile externalities via VMT taxation).
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Conclusion

» This paper develops a regression approach to indirectly regulate externalities.
— Deadweight loss is equal to the residual from the regression (i.e., regression loss).

- Optimal indirect policy obtained by characterizing projection associated with regression.

» The results of this paper also...
- show that “non-market” policies, such as price and quantity controls, can be optimal;
- show how to implement allocations (nonlinear taxes can be derived via regression); and

- have empirical relevance (e.g., regulation of automobile externalities via VMT taxation).

Thank you!

Questions/comments? & zykang@cmsa.fas.harvard.edu
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