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Abstract

We consider the bilateral trade problem, in which two agents trade a single indivisible item.
It is known that the only dominant-strategy truthful mechanism is the fixed-price mechanism:
given commonly known distributions of the buyer’s value B and the seller’s value S, a price p
is offered to both agents and trade occurs if S ≤ p < B. The objective is to maximize either
expected welfare E[S + (B − S)1S≤p<B] or expected gains from trade E[(B − S)1S≤p<B].

We determine the optimal approximation ratio for several variants of the problem. When
the agents’ distributions are identical, we show that the optimal approximation ratio for welfare

is 2+
√
2

4
. The optimal approximation for gains from trade in this case was known to be 1/2;

we show that this can be achieved even with just 1 sample from the common distribution.
We also show that a 3/4-approximation to welfare can be achieved with 1 sample from the
common distribution. When agents’ distributions are not required to be identical, we show that
a previously best-known (1−1/e)-approximation can be strictly improved, but 1−1/e is optimal
if only the seller’s distribution is known.

http://arxiv.org/abs/2107.14327v1


1 Introduction

In this paper, we study the performance of fixed-price mechanisms in the canonical context of
bilateral trade, in which a buyer and seller bargain over a single indivisible good. As is standard in
the literature, agents have independent private values for the good, B for the buyer and S for the
seller, and the mechanism designer is given some information about the distributions from which
these values are drawn. We consider two basic settings in this paper: one where the distributions
of the agents’ values are identical (the “symmetric” case), and one where the distributions are
arbitrary (the “general” or “asymmetric” case). We measure the performance of a mechanism by
considering either (i) the “gains from trade”: B−S whenever trade occurs and 0 otherwise, or (ii)
the “welfare”: B if trade occurs and S otherwise. Observe that the difference between welfare and
gains from trade is simply the seller’s value.

The “first-best” optimum is considered to be max{B,S} for welfare, and max{B − S, 0} for
gains from trade. In their seminal work, Myerson and Satterthwaite [13] showed that no budget-
balanced, individually rational Bayesian incentive-compatible (BIC) mechanism attains the first-
best optimum in general. They also presented a “second-best” mechanism which is budget-balanced,
individually rational, BIC, and achieves the best possible gains from trade attainable by any such
mechanism. However, the second-best mechanism is complicated and difficult to implement in
practical settings, so a recent growing literature seeks simpler mechanisms that maintain provably
near-optimal approximation guarantees.

Motivated by the need for strategic simplicity, we focus on dominant-strategy incentive com-
patible (DSIC) mechanisms. A fundamental result of Hagerty and Rogerson [10] is that essentially
every DSIC mechanism for bilateral trade has the following form: the mechanism designer chooses
a (possibly random) price and offers trade at this price to the buyer and seller. Trade occurs if and
only if the buyer’s value exceeds the chosen price and the seller’s value does not; this mechanism is
DSIC. We refer to this as a fixed-price or posted-price mechanism. Given this explicit characteriza-
tion of the allowed mechanisms under our incentive compatibility criterion, other questions arise.
How close to the efficient outcome can fixed-price mechanisms get? What information about the
agents is required to set the optimal price? In this paper we give a comprehensive answer to these
questions in the special case of symmetric bilateral trade, and partial answers in the general case.

1.1 Prior Work

Since the seminal work of Myerson and Satterthwaite [13], a large literature has emerged that
characterizes the optimal incentive-compatible mechanisms in various settings. When the strong
budget balance condition is imposed, [10] shows that dominant-strategy mechanisms for bilateral
trade must essentially be fixed-price mechanisms, which we study in this paper for their strategic
simplicity. [7] and [16] show that fixed-price mechanisms can be optimal even when the budget
balance condition is relaxed to a no-deficit condition.

The two papers most closely related to ours are [3] and [8]. The former shows that there
is a randomized choice of a price based on the seller’s distribution which provides a (1 − 1/e)-
approximation to the optimal welfare (i.e., the expected welfare provided by the mechanism is
at least 1 − 1/e times the optimal welfare). This approximation improves the bounds shown in
previous work by [4] and [6]. On the other hand, [8] shows that one can get a 1/2-approximation
of welfare by just posting a sample from the seller distribution as a price (also in the asymmetric
setting). Approximations to gains from trade have also been extensively studied in the literature
[2, 5, 15, 12, 14, 11]. In particular, [12] shows that in the case of identical buyer’s and seller’s
distributions, setting the price p to be the median of the distribution achieves a 1/2-approximation
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to optimal gains from trade. More recently, [11] shows that choosing the mean also achieves a
1/2-approximation to optimal gains from trade, and this choice is in fact best possible among all
fixed prices for a given distribution.

There have been various other results that show how first-best efficiency can be approximated
when agents’ values are drawn from restricted families of distributions (i.e., distributions satisfying
certain regularity conditions), such as those due to [1] and [5]. In this spirit, [16] demonstrates
the optimality of the mean as a fixed-price mechanism in a bilateral trade setting for log-concave
distributions that have an increasing hazard rate.1 By contrast, our objective is to consider the
most general class of distributions possible. As such, our results do not depend on distributional
assumptions; all we require is that the distribution of agents’ values has finite and nonzero mean.

1.2 Our Results

We extend the state of the art for bilateral trade in the following ways:

1. We show that a 1/2-approximation of optimal gains from trade in the symmetric case (which
was already known by using the mean or median of the distribution) can be also achieved
with the knowledge of a single prior sample from the distribution; by posting a price equal to
this sample. Interestingly, our mechanism always achieves exactly 1/2 of optimal gains from
trade, for any distribution.

2. We prove that the same mechanism (posting a prior sample as a price) attains a 3/4-
approximation to the optimal welfare in the symmetric case (compared to a 1/2-approximation
by using a single sample in the asymmetric setting [8]). 3/4 is also tight for this mechanism.

3. We show that in the symmetric setting, a fixed-price mechanism using the mean as a price

attains a 2+
√
2

4 -approximation of the optimal welfare, which is the best possible among fixed-
price mechanisms.

4. For general (asymmetric) bilateral trade, with arbitrary agents’ distributions, we prove that
there is a (1− 1/e+ ε)-approximation to optimal welfare for some constant ε > 0, improving
the previously best-known (1− 1/e)-approximation [3].

5. We also show that the 1− 1/e-approximation cannot be improved with the knowledge of the
seller’s distribution only (which is what the mechanism of [3] uses).

Variant Welfare approximation Gains from trade approximation

Symmetric, full knowledge (2 +
√
2)/4* 1/2* [11, 12]

Symmetric, 1 prior sample 3/4* 1/2*

Asymmetric, full knowledge 1− 1/e + ε 0* [3]

Asymmetric, 1 prior sample 1/2 [8] 0* [3]

Table 1: A survey of fixed-price mechanism approximations for bilateral trade. Our contributions
are highlighted in magenta. Provably optimal results (within their variant) are marked with a *.

1Another difference between the result in [16] and our Proposition 5 is that they do not restrict attention to posted-
price mechanisms ex ante as we do, but rather consider dominant-strategy mechanisms with a no-deficit condition
(as opposed to strong budget balance).
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2 Model

Here we formally outline the model that was discussed above.

Bilateral Trade. The bilateral trade problem is simple: two agents, a buyer and a seller, value
an item that is held by the seller at B and S respectively. The specific realizations of B and S are
unknown to us, but we assume that we have B ∼ FB and S ∼ FS , with B and S independent, for
distribution functions FS and FB , about which we are given some information. For most of this
paper, we assume that we have F := FB = FS .

Bilateral Trade Mechanisms. A bilateral trade mechanism consists of an allocation function
A : R × R → {0, 1}, which takes in as input the reported valuations of the buyer and seller and
outputs 1 if a transaction should occur or 0 otherwise, and a payment function Π : R × R → R

which, if a trade occurs, determines the price at which the item should be transacted. By the
revelation principle [9], we are interested in incentive-compatible mechanisms (A,Π), where the
agents are incentivized to report their true values. There are two standard notions of incentive
compatibility that are considered in the literature: Bayesian incentive compatibility (BIC), and
dominant-strategy incentive compatibility (DSIC). The former roughly says that reporting true
values should be an optimal strategy for each agent, in expectation over the possible behavior
of the other agent. The latter notion, which is what we will consider in this paper, means that
reporting true values is always an optimal strategy for all agents, regardless of what the other agent
does. Hence the notion that agents have incentive to act according to their true preferences is fully
described by the DSIC property of a mechanism, which is formally defined as

{

Π(s, b)− s ·A(s, b) ≥ Π(s′, b)− s ·A(s′, b),
b · A(s, b)−Π(s, b) ≥ b · A(s, b′)−Π(s′, b′)

for all s, s′, b, b′ ∈ R.

That is, both agents are always better off reporting their true preferences. It was shown by [10]
that such mechanisms are essentially fixed-price mechanisms, where the payment function Π is
taken to be a (possibly random) single value p, only depending on the distribution from which the
valuations come from (and not on the valuations themselves). Then the allocation function is given
by A(b, s) = 1s≤p≤b: trade occurs if and only if the seller values the item less than p, and the buyer
values it more.

Gains From Trade and Welfare. As discussed above, we consider two benchmarks in this
paper: gains from trade and welfare. The optimal gains from trade, given a distribution function
F from which the valuations are drawn, is defined as

OPT-GFT(F ) = E[1B>S(B − S)],

while the gains from trade achieved by a particular, non-random posted price p is given by

GFT(p, F ) = E[1B≥p>S(B − S)].

Similarly, the corresponding welfare measures are defined as

OPT-W(F ) = E[S] + E[1B>S(B − S)] = E[S] + OPT-GFT(F ),

W(p, F ) = E[S] + E[1B≥p>S(B − S)] = E[S] + GFT(p, F ).
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Some of our proofs in the next sections rely on explicit formulas for each of these quantities, which
we now derive. The following derivation from [12] gives a formula for the expected optimal gains
from trade: letting f denote the density of F , we have

OPT-GFT(F ) = E[1B>S(B − S)]

=

∫ ∞

0

∫ b

0
(b− s)f(s)f(b) ds db

=

∫ ∞

0

[

(b− s)F (s)

∣

∣

∣

∣

b

s=0

+

∫ b

0
F (s) ds

]

f(b) db

=

∫ ∞

0

∫ b

0
F (s) ds · f(b) db

=

∫ b

0
F (s) ds ·

[

F (b)

∣

∣

∣

∣

∞

b=0

−
∫ ∞

0
F (b)2

]

db

=

∫ ∞

0
F (s) ds−

∫ ∞

0
F (b)2 db

=

∫ ∞

0
F (x)(1 − F (x)) dx.

A similar calculation gives an analogous formula for the gains from trade attained by posting a
price p. Indeed, we have

GFT(p, F ) = E[1B≥p>S(B − S)]

= E[1B≥p>S(B − p)] + E[1B≥p>S(p− S)]

= E[1B≥p(B − p)]P(S < p) + E[1p>S(p− S)]P(B ≥ p)

= F (p)

∫ ∞

p
f(b)(b− p) db+ (1− F (p))

∫ p

0
f(s)(p− s) ds

= F (p)

∫ ∞

p
(1− F (x)) dx+ (1− F (p))

∫ p

0
F (x) dx,

where the last equality is by integration by parts of each integral, as in the derivation of the formula
for OPT-GFT(F ) above.

3 Main Results

We organize the results into three subsections. In the first subsection, we focus on the setting
where only one sample from F is given, and show a 1/2-approximation of gains from trade and
a 3/4-approximation of welfare. In the second subsection, we work in the setting of full access to
the common distribution F, and show that posting the mean of F as a price gives a (2 +

√
2)/4-

approximation of welfare, which is the best-possible in the symmetric model. Finally, in the third
subsection we return to the asymmetric setting, where we now have different distributions FS and
FB for the buyer and seller, respectively. In this setting we give a (1+1/e+0.0001)-approximation
of welfare, showing that the mechanism of [4] is not optimal; however, we show that 1 − 1/e is
indeed optimal if one uses only the seller distribution to set the price.
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3.1 Single-Sample Approximations of Gains From Trade and Welfare

We now show that our posted-price mechanism with one sample achieves a 1/2-approximation of
the optimal gains from trade. As mentioned above, [11] showed that this is in fact the best-possible
worst-case approximation in the symmetric setting, even among DSIC mechanisms with full access
to the distribution F. We emphasize that this is not a bound, but an exact computation of the
approximation ratio. Formally, since our mechanism posts a sample from F as a price, we are
interested in the ratio

α :=
Ep∼F [GFT(p, F )]

OPT-GFT(F )
.

As we show next, we can compute exactly that α = 1/2, independently of F.

Theorem 1. The symmetric bilateral trade mechanism which under a valuation distribution F
posts a price p ∼ F achieves exactly 1/2 of the optimal gains from trade.

Proof. We can write Ep∼F [GFT(p, F )] as

∫ ∞

0

[

F (p)

∫ ∞

p
(1− F (x)) dx+ (1− F (p))

∫ p

0
F (x) dx

]

f(p) dp.

We now define γ1 :=
∫∞
0 f(p)F (p)

∫∞
p (1−F (x)) dx dp and γ2 :=

∫∞
0 f(p)(1−F (p))

∫ p
0 F (x) dx dp,

which we will compute separately for simplicity, since we then have Ep∼F [GFT(p, F )] = γ1 + γ2.
Let λ :=

∫∞
0 (1− F (x)) dx. Now for the first term, we have

γ1 =

∫ ∞

0
f(p)F (p)

∫ ∞

p
(1− F (x)) dx dp

=

∫ ∞

0
f(p)F (p)

(

λ−
∫ p

0
(1− F (x)) dx

)

dp

= λ

∫ ∞

0
f(p)F (p) dp−

∫ ∞

0
f(p)F (p)

∫ p

0
(1− F (x)) dx dp

=
λ

2
−

∫ ∞

0
f(p)F (p)

∫ p

0
(1− F (x)) dx dp

=
λ

2
− 1

2
F (p)2

∫ p

0
(1− F (x)) dx

∣

∣

∣

∣

∣

∞

0

+
1

2

∫ ∞

0
F (p)2(1− F (p)) dp

=
1

2

∫ ∞

0
F (p)2(1− F (p)) dp,

where we used that
∫ ∞

0
f(x)F (x) dx =

1

2
F (x)2

∣

∣

∣

∣

∞

0

= 1/2.

Note
∫ a
0 f(x)(1 − F (x)) dx = F (a)(1 − 1

2F (a)) by integrating by parts. Thus for the second term
we can write

γ2 = lim
a→∞

∫ a

0
f(p)(1− F (p))

∫ p

0
F (x) dx dp

= lim
a→∞

[

F (a)(1 − 1

2
F (a))

∫ a

0
F (x) dx−

∫ a

0
F (p)2(1− 1

2
F (p)) dp

]

.
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Now for θ := F (a)(1 − 1
2F (a)) we have θ → 1/2 as a → ∞. Thus we have

γ2 = lim
a→∞

[

θ

∫ a

0
F (x) dx−

∫ a

0
F (p)2(1− 1

2
F (p)) dp

]

=

∫ ∞

0

[

1

2
F (p)− F (p)2

(

1− 1

2
F (p)

)]

dp

=
1

2

∫ ∞

0
F (p)(1− F (p))2 dp.

Putting things together we get

Ep∼F [GFT(F ; p)] = γ1 + γ2

=
1

2

∫ ∞

0
F (p)2(1− F (p)) dp+

1

2

∫ ∞

0
F (p)(1− F (p))2 dp

=
1

2

∫ ∞

0
F (p)(1− F (p))[F (p) + (1− F (p))] dp

=
1

2

∫ ∞

0
F (p)(1− F (p)) dp.

Recalling that OPT-GFT(F ) =
∫∞
0 (1− F (x))F (x) dx, we get α = 1/2, completing the proof.

Given Theorem 1, it is simple to extend our result to obtain a 3/4 approximation of optimal
welfare. Recall the representations of the welfare measures that we derived in the previous section:

OPT-W(F ) = µ+ OPT-GFT(F ),

W(F, p) = µ+ GFT(F, p),

where µ := E[S] = E[B]. We can thus get the 3/4-approximation by applying Theorem 1:

Theorem 2. The symmetric bilateral trade mechanism which under a valuation distribution F
posts a price p ∼ F achieves a 3/4-approximation of the optimal welfare.

Proof. Using that Ep∼F [GFT(F, p)]/OPT-GFT(F ) = 1/2, we can write

Ep∼F [W(F, p)]

OPT-W(F )
=

µ+ Ep∼F [GFT(F, p)]

µ+ OPT-GFT(F )

= 1− 1

2

OPT-GFT(F )

µ+ OPT-GFT(F )

= 1− lim
a→∞

1

2

∫ a
0 F (x)(1 − F (x)) dx

∫ a
0 xf(x) dx+

∫ a
0 F (x)(1 − F (x)) dx

= 1− lim
a→∞

1

2

∫ a
0 F (x) dx−

∫ a
0 F (x)2 dx

aF (a) −
∫ a
0 F (x)2 dx

.

But note that we have
∫ a
0 F (x) dx ≤ a1/2(

∫ a
0 F (x)2 dx)1/2 by the Cauchy–Schwarz inequality. Thus

letting t := (
∫ a
0 F (x)2 dx)1/2, and noting that 0 ≤ t ≤ a1/2 and F (a) ≤ 1, we get

∫ a
0 F (x) dx−

∫ a
0 F (x)2 dx

aF (a)−
∫ a
0 F (x)2 dx

≤ a1/2t− t2

aF (a)− t2
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≤ 1

F (a)

t(a1/2 − t)

(a1/2 + t)(a1/2 − t)

=
1

F (a)

t

a1/2 + t
.

≤ 1

F (a)

1

2
a→∞−−−→ 1/2.

Thus we have
Ep∼F [W(F,p)]
OPT-W(F ) ≥ 1− 1

2
1
2 = 3/4, as desired.

Remark 3. Unlike our previous result for gains from trade, this approximation ratio is a lower
bound, and not an exact computation. Indeed, in the case of welfare, the approximation ratio of our
mechanism varies with the distribution F. Moreover, in further contrast with Theorem 1, this 3/4-
approximation is not the best-possible among the class of truthful mechanisms with full knowledge of
F , since we show in the next subsection that the optimal ratio here is instead (2+

√
2)/4 ≈ 0.8536.

Our remark notwithstanding, the approximation lower bound of 3/4 from Theorem 2 for our
mechanism is tight, as we show next.

Lemma 4. The 3/4-approximation bound of Theorem 2 is tight.

Proof. Take the distribution functions Fr(x) = min{xr, 1} parameterized by r ∈ R+. From the
proof of Theorem 2, we get

Ep∼F [W(Fr, p)]

OPT-W(Fr)
= 1− 1

2

∫ 1
0 xr(1− xr)dx

r
∫ 1
0 xrdx+

∫ 1
0 xr(1− xr)dx

= 1− 1

2

1
r+1 − 1

2r+1
r

r+1 +
1

r+1 − 1
2r+1

r→0−−−→ 1− 1

2

1

2
= 3/4, as desired.

3.2 Best-Possible Approximation of Welfare

We begin by showing that the optimal posted price in the symmetric setting is given simply by the
mean of the common distribution.

Proposition 5. The welfare-maximizing mechanism for symmetric bilateral trade is given by post-
ing the mean of the common distribution F :

p∗ = E[S] = E[B].

Proof. For any positive price p > 0, we may rewrite the welfare function as

W(p, F ) = E[S] + E[(B − S) · 1B>p≥p]

= E[S] + E[B · 1B>p] · F (p)− E[S · 1S≤p] · [1− F (p)] .

Because both agents’ values are drawn from the same distribution,

E[B · 1B>p] = E[S · 1S>p] = E[S]− E[S · 1S≤p].
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Thus:

W(p, F ) = E[S] + E[B · 1B>p] · F (p)− E[S · 1S≤p] · [1− F (p)]

= E[S] · [1 + F (p)]− E[S · 1S≤p]

= E[S] · [1 + F (p)]− p · F (p) +

∫ p

0
F (s) ds.

Now, for any fixed δ ∈ (0, p),

W(p± δ;F ) = E[S] · [1 + F (p± δ)] − (p ± δ) · F (p ± δ) +

∫ p±δ

0
F (x) dx.

We thus compute that



















W(p∗;F )−W(p∗ − δ;F ) = [F (p∗)− F (p∗ − δ)] · (E[S]− p∗)− δ · F (p∗ − δ) +

∫ p∗

p∗−δ
F (x) dx,

W(p∗;F )−W(p∗ + δ;F ) = [F (p∗)− F (p∗ + δ)] · (E[S]− p∗) + δ · F (p∗ + δ) −
∫ p∗+δ

p∗
F (x) dx.

In the first expression, since F is non-decreasing,

∫ p∗

p∗−δ
F (x) dx ≥

∫ p∗

p∗−δ
F (p∗ − δ) dx = δ · F (p∗ − δ).

Likewise, in the second expression, the same observation yields

−
∫ p∗+δ

p∗
F (x) dx ≥ −

∫ p∗+δ

p∗
F (p∗ + δ) dx = −δ · F (p∗ + δ).

Therefore, with p∗ = E[S] = E[B], substitution yields

{

W(p∗;F )−W(p∗ − δ;F ) ≥ [F (p∗)− F (p∗ − δ)] · (E[S]− p∗) = 0,

W(p∗;F )−W(p∗ + δ;F ) ≥ [F (p∗)− F (p∗ + δ)] · (E[S]− p∗) = 0.

Therefore the optimal fixed-price mechanism is given by p∗ = E[S].

Proposition 5 shows that only the first moment of the agents’ distribution is required by the
mechanism designer to determine the optimal fixed price; all higher moments are inconsequential.
Therefore, precise knowledge of the agents’ distribution, other than the mean of the distribution,
is irrelevant.

In general, the fixed-price mechanism p∗ = E[S] is not uniquely optimal. Suppose, for example,
that each agent’s value is 0 with probability 1/2 and 1 with probability 1/2. Then any price
p ∈ (0, 1) is optimal. Nonetheless, under weak regularity conditions on F , the mean is the uniquely
optimal price.

Corollary 6. Suppose that F is differentiable in a neighborhood of its mean, so that its density
f = F ′ is positive in that neighborhood. Then the optimal fixed-price mechanism that sets the price
as the mean of the distribution F is uniquely optimal.
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The proof of Corollary 6 can be directly obtained from the proof of Proposition 5 by noting
that the inequalities must hold strictly under the stated assumptions; we thus omit the details.
In particular, Corollary 6 applies under the usual assumption that F is continuously differentiable
with positive density.

Despite Corollary 6, we proceed without additional regularity assumptions on F to obtain a
general analysis. Given the mean µ := E[S] of the agents’ distribution, we can now determine the
expected welfare that the optimal fixed-price mechanism achieves, W(µ;F ):

W(µ;F ) = µ · [1 + F (µ)]− E[S · 1S≤µ]

= µ+ (µ− E[S |S ≤ µ]) · F (µ).

An interesting observation here is that the maximum expected welfare achieved by any fixed-price
mechanism depends on the agents’ distribution F through only three quantities: (i) the mean of
the distribution, µ; (ii) the quantile of the mean, F (µ); and (iii) the mean of the distribution
conditional on being no greater than µ, E[S |S ≤ µ]. Consequently, any modification to F that
preserves these three quantities will lead to the same maximum expected welfare.

This observation motivates the following approach to find the approximation ratio we achieve
by posting the mean as a price which, as we showed, is the best-possible among DSIC mechanisms:

inf
F

W(µF ;F )

OPT-W(F )
= inf

F
sup
p∈R+

W(p, F )

OPT-W(F )
. (A)

Define the subspace of probability distributions that fixes the three quantities from above:

∆L1(R+;µ, µ1, γ) := {F ∈ ∆L1(R+) : E[S] = µ, E[S |S ≤ µ] = µ1, F (µ) = γ} .

To compute (A), we first compute

inf
F∈∆L1 (R+;µ,µ1,γ)

sup
p∈R+

W(p, F )

OPT-W(F )
. (A’)

The original problem (A) is thus equivalent to

inf
µµ1 γ∈R+

0≤µ1≤µ;µ>0; 0<γ≤1

{

inf
F∈∆L1(R+;µ,µ1,γ)

sup
p∈R+

W(p, F )

OPT-W(F )

}

.

The objective of this decoupling is to reduce the dimension of our optimization problem. Instead
of minimizing over the infinite-dimensional space ∆L1(R+), our outer optimization problem is
simplified to minimization over three variables. However, the inner optimization problem (A’) still
requires minimizing over the infinite-dimensional space ∆L1(R+;µ, µ1, γ). To reduce the dimension
of (A’), define the space of distributions supported on at most 4 points that fixes the three quantities:

∆
(4)
L1 (R+;µ, µ1, γ) := {F ∈ ∆L1(R+;µ, µ1, γ) : F (x) =q0 · 1x≥0 + q1 · 1x≥x1

+ q2 · 1x≥x2 + q3 · 1x≥1}.

The probability masses are given by 0 ≤ q0, q1, q2, q3 ≤ 1.

Lemma 7. For any fixed 0 ≤ µ1 ≤ µ ≤ 1, µ > 0 and 0 < γ ≤ 1,

inf
F∈∆L1(R+;µ,µ1,γ)

sup
p∈R+

W(p, F )

OPT-W(F )
= inf

F∈∆(4)

L1 (R+;µ,µ1,γ)

sup
p∈R+

W(p, F )

OPT-W(F )
.
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We defer the proof of Lemma 7 to Appendix A and sketch the argument here. Fix F ∈
∆L1(R+;µ, µ1, γ). We may assume without loss of generality that F is a finite support discrete dis-
tribution because any F ∈ ∆L1(R+;µ, µ1, γ) can be approximated arbitrarily well by a correspond-
ing distribution in ∆L1(R+;µ, µ1, γ) supported on finitely many points. Moreover, by rescaling if
necessary, we may also assume that F (1) = 1.

To solve the inner problem (A’), our earlier observation shows that, given µ, µ1 and γ, W(p, F ) =
W(µ;F ) is constant for any F ∈ ∆L1(R+;µ, µ1, γ). That is:

inf
F∈∆L1(R+;µ,µ1,γ)

sup
p∈R+

W(p, F )

OPT-W(F )
= inf

F∈∆L1(R+;µ,µ1,γ)

µ+ (µ− µ1) · γ
OPT-W(F )

.

Thus (A’) can be solved by maximizing OPT-W(F ) over all F ∈ ∆L1(R+;µ, µ1, γ). Note that, from
the definition,

OPT-W(F ) = E[max{S,B}] = E[S] +
1

2
E[|B − S|].

Therefore, OPT-W(F ) can be optimized by the following procedure:

• For any probability mass in (0, µ), split the mass into two equal masses. Move each mass in
opposite directions, until one mass hits the boundary of the interval (0, µ).

• For any probability mass in (µ, 1), split the mass into two equal masses. Move each mass
in opposite directions, until one mass hits the boundary of the interval (µ + δ, 1), for some
sufficiently small δ > 0.2

Each of these operations is mean-preserving in the intervals (0, µ) and (µ, 1), so neither changes
the quantities µ = E[S], µ1 = E[S |S ≤ µ] and γ = F (µ). Therefore, the operations preserve the
maximum expected welfare achieved by any fixed-price mechanism, W(µ;F ) = µ+(µ− µ1)·γ. How-
ever, they increase E[|B−S|] in the respective intervals, and so the operations increase OPT-W(F ).

Applying these operations recursively,3 we obtain a 4-point distribution F̃ ∈ ∆
(4)
L1 (R+;µ, µ1, γ) such

that
W(p; F̃ )

OPT-W(F̃ )
≤ W(p, F )

OPT-W(F )
.

Since ∆
(4)
L1 (R+;µ, µ1, γ) ⊂ ∆L1(R+;µ, µ1, γ), this proves the result of Lemma 7.

As a consequence of Lemma 7, we can restrict attention to 4-point distributions when solving

the minimax problem (A). Such distributions F ∈ ∆
(4)
L1 (R+;µ, µ1, γ) can be written as4

F (x) = q0 · 1x≥0 + q1 · 1x≥µ + q2 · 1x≥µ+δ + q3 · 1x≥1 for some δ ∈ (0, 1 − µ).

Here, the probability masses q0, q1, q2 and q3 satisfy q0 + q1 + q2 + q3 = 1 and the three additional
conditions:















E[S] = q1µ+ q2 (µ+ δ) + q3 = µ,

E[S |S ≤ µ] =
q1µ

q0 + q1
= µ1,

F (µ) = q0 + q1 = γ.

2Note that this δ > 0 is required so that this operation does not change F (µ) = γ.
3In the proof of Lemma 7 in Appendix A, we consider only the limiting distribution F̃ obtained from recursive

application of these operations; however, these operations motivate the construction of F̃ in the proof.
4The definition of ∆

(4)

L1 (R+;µ, µ1, γ) is slightly more general as it allows for any F (x) in the form

F (x) = q0 · 1x≥0 + q1 · 1x≥x1
+ q2 · 1x≥x2

+ q3 · 1x≥1.

However, from the proof sketch of Lemma 7 (and further justified in the proof given in Appendix A), we may narrow
our attention to distributions F where x1 = µ and x2 = µ+ δ for sufficiently small δ > 0.
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Since µ, µ1 and γ are given, we can rewrite F as follows:5

F (x) = γ

(

1− µ1

µ

)

· 1x≥0 +
µ1γ

µ
· 1x≥µ +

1− γ − µ+ µ1γ

1− µ− δ
· 1x≥µ+δ +

µγ − µ1γ − δ − δγ

1− µ− δ
· 1x≥1.

This parametrization of F allows us to easily compute W(µ;F ) and OPT-W(F ). We have shown
previously that W(µ;F ) depends only on µ, µ1 and γ:

W(µ;F ) = µ+ (µ− µ1) · γ.

On the other hand, OPT-W(F ) can be computed by observing that B,S must be either: (i) both
no greater than µ; (ii) both greater than µ; or (iii) on different sides of µ. Thus:

OPT-W(F ) = E[max{B,S}]
= E[max{B,S} · 1B,S≤µ] + E[max{B,S} · 1B,S>µ]

+ E[max{B,S} · 1max{B,S}>µ1min{B,S}≤µ].

The first and third contributions can be computed separately:










E[max{B,S} · 1B,S≤µ] = [F (µ)]2 · µ (1− P[B,S = 0 |B,S ≤ µ]) = µ1γ
2

(

2− µ1

µ

)

,

E[max{B,S} · 1max{B,S}>µ1min{B,S}≤µ] = 2 [F (µ)] · E[S · 1S>µ] = 2γ (µ− γµ1) .

The second contribution can be bounded above independently of δ:

E[max{B,S} · 1B,S>µ] = [1− F (µ)]2 · {1− (1− µ− δ) · P[B = S = µ+ δ |B,S > µ]}

= (1− γ)2 − (1− γ − µ+ µ1γ)
2

1− µ− δ

≤ (1− γ)2 − (1− γ − µ+ µ1γ)
2

1− µ
.

Consequently, we obtain an upper bound for OPT-W(F ) that is independent of δ:

OPT-W(F ) ≤ µ1γ
2

(

2− µ1

µ

)

+ 2γ (µ− γµ1) + (1− γ)2 − (1− γ − µ+ µ1γ)
2

1− µ
.

Therefore, we have

W(µ;F )

OPT-W(F )
≥ µ+ (µ− µ1) γ

µ1γ2
(

2− µ1

µ

)

+ 2γ (µ− γµ1) + (1− γ)2 − (1−γ−µ+µ1γ)
2

1−µ

.

This allows us to bound the value of the minimax problem (A) from below:

inf
F∈∆L1(R+)

sup
p∈R+

W(p, F )

OPT-W(F )
= inf

µµ1 γ∈R+

0≤µ1≤µ;µ,γ∈(0,1]

{

inf
F∈∆L1 (R+;µ,µ1,γ)

W(µ;F )

OPT-W(F )

}

≥ inf
µµ1 γ∈R+

0≤µ1≤µ;µ,γ∈(0,1]

µ+ (µ− µ1) γ

µ1γ2
(

2− µ1

µ

)

+ 2γ (µ− γµ1) + (1− γ)2 − (1−γ−µ+µ1γ)
2

1−µ

.

The lower bound in the above expression can be computed. Notably, optimization is carried
out over a 3-dimensional space, and so elementary techniques apply. While we relegate the com-
putational details to Appendix A, we state the result here:

5Details of this computation can be found in the proof of Lemma 7 given in Appendix A.
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Lemma 8. The minimax value of the game is bounded below:

inf
F∈∆L1(R+)

sup
p∈R+

W(p, F )

OPT-W(F )
≥ 2 +

√
2

4
.

This bound is, in fact, tight. To prove this, we demonstrate that the bound can be attained by
explicitly constructing a minimizing sequence of distributions {Fn}∞n=1. Formally, we consider

Fn(x) = (
√
2− 1)

(

1− 1

n

)

· 1x≥0 + (2−
√
2) · 1x≥1/n +

1

n
(
√
2− 1) · 1x≥1.

The mean of the distribution Fn is µn = 1/n. Moreover, the quantile of the mean is γn = Fn(µn) =
1− (

√
2− 1)/n and

µ1,n = E[S |S ≤ µn] =
2−

√
2

n− (
√
2− 1)

.

Thus

W(µn;Fn) = µn + (µn − µ1,n) γn =

√
2

n
−

√
2− 1

n2
.

On the other hand, we can compute that

OPT-W(Fn) =
4 (

√
2− 1)

n
− 4

√
2− 1

n2
.

Therefore, this sequence of distributions achieves the lower bound in the limit as n → ∞:

lim
n→∞

W(µn;Fn)

OPT-W(Fn)
=

√
2

4 (
√
2− 1)

=
2 +

√
2

4
.

This proves our main result:

Theorem 9. The minimax value of the game is

inf
F∈∆L1(R+)

sup
p∈R+

W(p, F )

OPT-W(F )
=

2 +
√
2

4
.

That is, for any distribution F , the designer can always select a price that achieves at least (2 +√
2)/4 ≈ 0.8536 of the total expected welfare under the optimally efficient outcome.

3.3 Approximations of Welfare in the Asymmetric Model

We now relax the requirement that both agents’ values are drawn from the same distribution. Let
the seller’s (resp. buyer’s) value be drawn from FS (resp. FB). Accordingly, we modify the notation
used previously. We denote the welfare function by

W(p;FS , FB) := E[S + (B − S) · 1B>p≥S ],

where the expectation is taken over S ∼ FS and B ∼ FB . Likewise, we denote the expected welfare
under the first-best outcome by

OPT-W(FS , FB) := E[S + (B − S) · 1B>S ].
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Therefore the best-possible posted-price approximation ratio is

inf
FS ,FB∈∆L1 (R+)

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
. (A-ASYM)

As mentioned previously, [3] shows that the value of the minimax problem (A-ASYM) is bounded
below by 1 − 1/e. This is done through explicit construction of a randomized mechanism that
achieves this bound in expectation. While this mechanism requires the designer to use detailed
distributional information, it has the interesting property that the designer requires knowledge
of only the seller’s distribution and not the buyer’s. Towards leveraging this fact, we prove the
following:

Proposition 10. Given distributions FS and FB that satisfy E[(S − B)+] = 0, the designer can
always select a price that achieves at least 3/4 of the optimal expected welfare. That is:

inf
FS ,FB∈∆L1 (R+)
E[(S−B)+]=0

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
=

3

4
.

We defer the proof of this proposition and all other results in this subsection to the appendix.
We interpret Proposition 10 as a statement of how asymmetry between the agents can lead to
considerable, albeit bounded, welfare loss. In Proposition 10, the asymmetry is “worst possible”
in the sense that the seller’s value is almost surely no greater than the buyer’s value. Yet, “worst
possible” asymmetry is not the same as the worst-case scenario for the minimax problem (A-ASYM).
Indeed, the designer can find a price that separates all the seller’s possible values from the buyer’s
possible values; because trade does not occur when the buyer’s value is exactly equal to this price,
inefficiency may result.6

When asymmetry is not as severe, we can improve the lower bound to the minimax problem
(A-ASYM) through the mechanism proposed by [3]:

Proposition 11 (Theorem 4.1 in [3]). For any given distributions FS and FB,

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
≥ 1− 1

e
+

1

e
· E[(S −B)+].

In view of Propositions 10 and 11, our strict improvement to the 1−1/e bound can be achieved
heuristically as follows:

• If E[(S − B)+] is sufficiently small, then we construct a mechanism that exploits the se-
vere asymmetry in the agents’ distributions to get a performance ratio close to 3/4, as in
Proposition 10.

• If E[(S−B)+] is large, then the mechanism of [3] already ensures a performance ratio strictly
higher than 1− 1/e.

Our improvement is documented by the following:7

6We emphasize that this result, along with our other results in this paper, is not an artifact of the tiebreak rule
that we have adopted, which specifies that trade occurs if and only if B > p ≥ S. For instance, if a different tiebreak
rule were to be chosen such that trade occurs if and only if B > p > S, then a similar result obtains in the limit
E[(S −B)+] → 0 (e.g., let FB(x) = (1− 1/n) · 1x≥1/n−1/n2 + 1/n · 1x≥1).

7We qualify our result in Theorem 12 by noting that we did not optimize for the strict constant-factor improvement
of 0.0001, as our goal was to demonstrate that such an improvement exists. We do not believe that optimizing for
this constant would yield a substantially higher improvement.
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Theorem 12. Given distributions FS and FB, the designer can always select a price that achieves
at least 1− 1/e+ 0.0001 of the optimal expected welfare. That is:

inf
FS ,FB∈∆L1 (R+)

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
≥ 1− 1

e
+ 0.0001.

In contrast to Theorem 9, we interpret Theorem 12 as essentially a negative result in the
design of informationally simple mechanisms that achieve close to optimal welfare in this setting.
Despite the fact that our proposed mechanism uses distributional knowledge of FS and FB (and,
in particular, substantially more knowledge of the distributions than just their means), we are
unable to guarantee a substantially higher performance than we would have obtained by using only
distributional knowledge of FS .

As a counterpoint to Theorem 12 and motivated by the mechanism proposed by [3], we consider
mechanisms that use only information about the seller’s distribution. The question that we ask
here is: Is it possible to achieve a strictly better performance than 1− 1/e of optimal welfare with
any mechanism that uses only information about the seller’s distribution FS? The answer is no:

Theorem 13. Given distributions FS and FB , for any (possibly randomized) mechanism that uses
only quantile distributional knowledge of the seller’s distribution, the designer can achieve no better
than 1− 1/e of the optimal expected welfare.

4 Concluding Remarks

Our results give a comprehensive description of the power of dominant-strategy truthful mechanisms
for bilateral trade, in terms of two widely-studied objectives in mechanism design: welfare and gains
from trade, together with the informational requirements needed to achieve those approximations.

We would like to distinguish our paper from previous work as follows. In our view, the main
contribution of our paper is to show that fixed-price mechanisms can be effective particularly in mar-
kets with symmetric agents, for reasons other than strategic simplicity for agents. Two important
properties of fixed-price mechanisms in such markets is that they are informationally simple from
the designer’s perspective while being approximately efficient at the same time. We view robust-
ness to different benchmarks (i.e., optimal welfare and optimal gains from trade) as an important
criterion for “approximate efficiency.” In our view, previous approximability and inapproximability
results in the asymmetric case, which crucially depend on benchmark adopted, constitute mainly
a negative result for the asymmetric case.

A fundamental question remains in the asymmetric case, which is whether a constant-factor
approximation to optimal gains from trade is possible with any Bayesian incentive-compatible
mechanism. We already know that such a mechanism cannot be incentive-compatible in dominant
strategies, i.e. it cannot be a fixed-price mechanism. There are other techniques to design Bayesian
incentive-compatible mechanisms. In particular, the second-best mechanism is in some sense known,
but its implicit description does not seem very useful for the derivation of approximation guarantees.
It appears that a more specific Bayesian mechanism would be needed to resolve this question.
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A Omitted Proofs

Lemma 14. For any fixed 0 ≤ µ1 ≤ µ ≤ 1, µ > 0 and 0 < γ ≤ 1,

inf
F∈∆L1(R+;µ,µ1,γ)

sup
p∈R+

W(p;F )

OPT-W(F )
= inf

F∈∆(4)

L1 (R+;µ,µ1,γ)

sup
p∈R+

W(p;F )

OPT-W(F )
.

Proof. Fix F ∈ ∆L1(R+;µ, µ1, γ). We may assume without loss of generality that F is a finite
discrete distribution, otherwise we may approximate F arbitrarily well by such a distribution in
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∆L1(R+;µ, µ1, γ).
8 By rescaling if necessary, we may also assume that F (1) = 1. Let F put positive

probability mass only on each of the points x0, x1, . . . , xN ∈ [0, 1].

Motivated by the procedure outlined in the proof sketch, we now construct F̃ ∈ ∆
(4)
L1 (R+;µ, µ1, γ)

such that, for any F ∈ ∆L1(R+;µ, µ1, γ),

W(µ; F̃ )

OPT-W(F̃ )
≤ W(µ;F )

OPT-W(F )
.

We write
F̃ (x) = q0 · 1x≥0 + q1 · 1x≥µ + q2 · 1x≥µ+δ + q3 · 1x≥1.

To construct F̃ , we choose q0, q1, q2, q3 and δ as follows:

• δ is defined by
δ = min{xi − µ : xi > µ, i ∈ {1, 2, . . . , N}}.

• q0 and q1 are defined by
{

q0 + q1 = γ,

(q0 + q1)µ1 = q1µ.

That is, q0 = γ(1 − µ1/µ) and q1 = µ1γ/µ.

• If µ+ δ < 1, q2 and q3 are defined by

{

q2 + q3 = 1− γ,

q2(µ + δ) + q3 = µ− (q0 + q1)µ1.

That is, q2 = (1− γ − µ+ µ1γ)/(1 − µ− δ) and q3 = (µγ − µ1γ − δ + δγ)/(1 − µ− δ).

If µ+ δ = 1, q2 and q3 are defined by q2 = 0 and q3 = 1− γ.

With F̃ defined above, we first verify that F̃ ∈ ∆
(4)
L1 (R+;µ, µ1, γ). Indeed:















F̃ (µ) = q0 + q1 = γ,

EF̃ [S] = q1µ+ q2(µ + δ) + q3 = µ,

EF̃ [S |S ≤ µ] =
q1µ

q0 + q1
= µ1.

Next, we show that, for any F ∈ ∆L1(R+;µ, µ1, γ),

OPT-W(F̃ ) ≥ OPT-W(F ).

To do so, we compute that

OPT-W(F ) = EF [max{B,S}]
= EF [max{B,S} · 1B,S≤µ] + EF [max{B,S} · 1B,S>µ]

+ EF [max{B,S} · 1max{B,S}>µ1min{B,S}≤µ].

8For instance, one may approximate F by the finite discrete distributions corresponding to Riemann-sum approx-
imations of E[S |S ≤ µ] (when restricted to S ≤ µ) and E[S |S > µ] (when restricted to S > µ).
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That is, B,S must be either: (i) both no greater than µ; (ii) both greater than µ; or (iii) on different
sides of µ. For the last case, observe that:

EF [max{B,S} · 1max{B,S}>µ1min{B,S}≤µ] = EF̃ [max{B,S} · 1max{B,S}>µ1min{B,S}≤µ].

Therefore, it suffices to show that EF [max{B,S} · 1B,S≤µ] ≤ EF̃ [max{B,S} · 1B,S≤µ] and that
EF [max{B,S} · 1B,S>µ] ≤ EF̃ [max{B,S} · 1B,S>µ].

To show the former result, observe that







EF [max{B,S} · 1B,S≤µ] = 2

∫ µ

0
xF (x) dF (x) = µγ2 −

∫ µ

0
[F (x)]2 dx,

EF̃ [max{B,S} · 1B,S≤µ] = (q0 + q1)
2µ− q20µ = µγ2 − q20µ.

However, from the definition of q0:

∫ µ

0
F (x) dx = µγ −

∫ µ

0
x dF (x) = (µ − µ1)γ = q0µ.

Therefore

q20µ =
1

µ

[
∫ µ

0
F (x) dx

]2

≤
∫ µ

0
[F (x)]2 dx.

This establishes that EF [max{B,S} · 1B,S≤µ] ≤ EF̃ [max{B,S} · 1B,S≤µ]. The latter result follows
by a similar argument.

We have thus proved that OPT-W(F̃ ) ≥ OPT-W(F ). Moreover, since W(µ; F̃ ) = W(µ;F ), we
have

W(p; F̃ )

OPT-W(F̃ )
≤ W(p;F )

OPT-W(F )
.

Since F̃ ∈ ∆
(4)
L1 (R+;µ, µ1, γ) ⊂ ∆L1(R+;µ, µ1, γ), hence this establishes:

inf
F∈∆L1(R+;µ,µ1,γ)

sup
p∈R+

W(p;F )

OPT-W(F )
= inf

F∈∆(4)

L1 (R+;µ,µ1,γ)

sup
p∈R+

W(p;F )

OPT-W(F )
.

Lemma 15. The value of the minimax problem (A) is bounded below:

inf
F∈∆L1(R+)

sup
p∈R+

W(p;F )

OPT-W(F )
≥ 2 +

√
2

4
.

Proof. From the argument given in the paper, it suffices to show that

inf
µµ1 γ∈R+

0≤µ1≤µ;µ,γ∈(0,1]

µ+ (µ − µ1)γ

µ1γ2(2− µ1

µ ) + 2γ(µ − γµ1) + (1− γ)2 − (1−γ−µ+µ1γ)2

1−µ

=
2 +

√
2

4
.

We begin with a change of variables. Define x := 1− µ1/µ ∈ [0, 1]; the minimization problem thus
becomes

inf
x∈[0,1]

µ,γ∈(0,1]

1 + γx

1 + 2γx− γ2x2

1−µ

.
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Observe that, for x ∈ [0, 1] and µ, γ ∈ (0, 1],

∂

∂µ

[

1 + γx

1 + 2γx− γ2x2

1−µ

]

=
γ2x2(1 + γx)

[1− µ+ γx(2− 2µ − γx)]2
≥ 0.

That is, the objective function is non-decreasing in µ.
Thus the infimum of the objective function is achieved in the limit as µ → 0:

inf
x∈[0,1]

µ,γ∈(0,1]

1 + γx

1 + 2γx− γ2x2

1−µ

= inf
x∈[0,1]
γ∈(0,1]

1 + γx

1 + γx(2− γx)
.

We now make another change of variables. Define y := γx ∈ [0, 1]. The minimization problem thus
becomes a single-dimensional minimization problem:

inf
x∈[0,1]
γ∈(0,1]

1 + γx

1 + γx(2− γx)
= inf

y∈[0,1]

1 + y

1 + y(2− y)
=

2 +
√
2

4
.

Proposition 16 (Proposition 10 in the main text). Given distributions FS and FB that satisfy
E[(S − B)+] = 0, the designer can always select a price that achieves at least 3/4 of the total
expected welfare under the first-best efficient outcome. That is:

inf
FS ,FB∈∆L1 (R+)
E[(S−B)+]=0

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
=

3

4
.

Proof. The result to Proposition 10 follows from Lemma 17, which we prove below.

Lemma 17. Fix α > 0. Given distributions FS and FB that satisfy E[(S−B)+] ≤ α·OPT-W(FS , FB).
Suppose there exist p+ and p− such that:

(i) P[S > p+] ≤
√
10α;

(ii) P[B < p−] ≤
√
10α; and

(iii) 0 < p+ − p− ≤
√
10α.

Then the designer can set the price to be either p+ or p− to achieve an expected welfare of at least
(

3

4
− 2

√
10α

)

· OPT-W(FS , FB).

Remark 18. We note that Lemma 17 implies the result of Proposition 10 as follows. Given
distributions FS and FB that satisfy E[(S−B)+] = 0, there exists a price p∗ for which P[S ≤ p∗] =
P[B ≥ p∗] = 1. Fix α > 0. Define











p+ := p∗ +
1

2

√
10α · OPT-W(FS , FB),

p− := p∗ − 1

2

√
10α · OPT-W(FS , FB).

Observe that P[S > p+] = P[B < p−] = 0 <
√
10α and p+ − p− =

√
10α, so Lemma 19 applies for

any α > 0. The result of Proposition 10 is obtained in the limit as α → 0.
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Proof. For ease of notation, given a fixed-price mechanism p, denote the welfare loss relative to
first-best efficiency by LOSS(p;FS , FB):

LOSS(p;FS , FB) := OPT-W(FS , FB)−W(p;FS , FB) = E[(B − S) · 1S<B≤p] + E[(B − S) · 1p<S<B].

We begin by analyzing the welfare loss for p+ and p−. We have:



















LOSS(p+;FS , FB) = E[(B − S) · 1S<B≤p+] + E[(B − S) · 1p+<S<B]

≤ E[B · 1B<p+1S<p−] + E[(B − S) · 1p−≤S<B≤p+] + E[B · 1p+<B1p+<S],

LOSS(p−;FS , FB) = E[(B − S) · 1S<B≤p− ] + E[(B − S) · 1p−<S<B]

≤ E[B · 1B<p−1S<p− ] + E[(B − S) · 1p−≤S<B≤p+] + E[B · 1B≥p+1S≥p−].

Consider the terms E[B ·1B<p+1S<p−] and E[B ·1B≥p+1S≥p−], which could potentially be large
(i.e., close to the value of OPT-W(FS , FB)). However, they cannot be both large. Indeed, let
β := E[B · 1B<p+ ]/E[B] and σ := P[S < p−]. Because of the independence between B and S, we
can write E[B · 1B<p+1S<p− ] = βσ · E[B] and E[B · 1B>p+1S>p− ] = (1 − β)(1 − σ) · E[B]. We
distinguish between two cases: β + σ ≤ 1 or β + σ > 1. In the first case, setting a price p+ yields

E[B · 1B<p+1S<p−] ≤ βσ · E[B] ≤ 1

4
· E[B] ≤ 1

4
·OPT-W(FS , FB).

In the second case, setting a price p− yields

E[B · 1B≥p+1S≥p− ] ≤ (1− β)(1 − σ) · E[B] ≤ 1

4
· E[B] ≤ 1

4
· OPT-W(FS , FB).

The remaining terms can be bounded by O(
√
α) ·OPT-W(FS , FB) as follows:















E[(B − S) · 1p−≤S<B≤p+] ≤ p+ − p− ≤
√
10α · OPT-W(FS , FB),

E[B · 1p+<B1p+<S] ≤ E[B] · P[p+ < S] ≤
√
10α · OPT-W(FS , FB),

E[B · 1B<p−1S<p− ] ≤ E[B] · P[B < p−] ≤
√
10α · OPT-W(FS , FB).

Therefore, in either case, the welfare loss is bounded above by
(

1
4 + 2

√
10α

)

·OPT-W(FS , FB). Thus

max
p∈{p+, p−}

W(p;FS , FB) ≥
(

3

4
− 2

√
10α

)

· OPT-W(FS , FB).

We now derive a sufficient condition for the hypotheses of Lemma 17 to hold:

Lemma 19. Fix α > 0. Given distributions FS and FB that satisfy E[(S−B)+] ≤ α·OPT-W(FS , FB),
suppose there exists p∗ such that

P[S ≥ p∗] >
1

5
and P[B ≤ p∗] >

1

5
.

Define










p+ := p∗ +
1

2

√
10α · OPT-W(FS , FB),

p− := p∗ − 1

2

√
10α · OPT-W(FS , FB).

Then P[S ≥ p+] ≤
√
10α and P[B ≤ p−] ≤

√
10α.
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Proof. Suppose to the contrary that P[S ≥ p+] >
√
10α. Since P[B ≤ p∗] > 1/5 by definition of

p∗, we have

E[(S −B)+] ≥ (p+ − p∗) · P[S ≥ p+] · P[B ≤ p∗] > α ·OPT-W(FS , FB), a contradiction.

Similarly, if P[B ≤ p−] >
√
10α, then since P[S ≥ p∗] > 1/5 by definition of p∗, we have

E[(S −B)+] ≥ (p∗ − p−) · P[S ≥ p∗] · P[B ≤ p−] > α ·OPT-W(FS , FB), a contradiction.

Therefore, for small α > 0, Lemma 19 guarantees a strict improvement over the 1− 1/e bound
(i.e., that Lemma 17 applies) if there exists p∗ such that

P[S ≥ p∗] >
1

5
and P[B ≤ p∗] >

1

5
.

What if such a p∗ does not exist? The following result ensures that we can still guarantee a strict
improvement over the 1− 1/e bound:

Lemma 20. Given distributions FS and FB, let p
∗ := inf{p : P[S ≥ p] ≤ 1/5}. If P[B ≤ p∗] ≤ 1/5,

then

W(p∗;FS , FB) ≥
17

25
·OPT-W(FS , FB).

Proof. Define q := P[S ≥ p∗] ≤ 1/5 and r := E[B · 1B≤p∗ ]/E[B]. Observe that

r ≤ P[B ≤ p∗] ≤ 1

5
.

As above, denote the welfare loss relative to first-best efficiency by LOSS(p;FS , FB):

LOSS(p;FS , FB) := OPT-W(FS , FB)−W(p;FS , FB) = E[(B − S) · 1S<B≤p] + E[(B − S) · 1p<S<B].

We bound LOSS(p∗;FS , FB) from above as follows:

LOSS(p∗;FS , FB) ≤ E[B · 1B≤p∗1S<p∗ ] + E[B · 1B>p∗1S≥p∗]

= r (1− q) · E[B] + (1− r) q · E[B]

=

[

1

2
− 2

(

1

2
− q

)(

1

2
− r

)]

E[B]

≤
[

1

2
− 2

(

1

2
− 1

5

)2
]

E[B] =
8

25
· E[B] ≤ 8

25
·OPT-W(FS , FB).

Therefore

W(p∗;FS , FB) = OPT-W(FS , FB)− LOSS(p∗;FS , FB) ≥
17

25
· OPT-W(FS , FB).

Proposition 21 (Proposition 11 in the main text; Theorem 4.1 in [3]). For any given distributions
FS and FB,

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
≥ 1− 1

e
+

1

e
· E[(S −B)+].
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Proof. The proof is based almost entirely on the proof of Theorem 4.1 in [3]. Since the mechanism
depends only on the seller’s distribution, we can work with a fixed buyer’s value and then take an
expectation over the buyer at the end. Given FS , we fix b ∈ R+ and consider the truncated seller’s
distribution F̃S (replacing all values above b by b):

F̃S(x) = FS(x) · 1x<b + 1x≥b.

We denote by Φb the step function Φb(x) = 1x≥b (corresponding to a deterministic value of b). For
any distribution G that depends only on FS , we note that

Ep∼G[W(p; F̃S ,Φb)] = Ep∼G[W(p;FS ,Φb)]− P[S > b] · (ES∼FS
[S |S > b]− b) ,

because the last term is exactly the expected value that is lost by modifying the seller’s distribution
to F̃S . (Note that the trade never happens when S > b, so the outcome in this case is always S.)
By the same argument,

OPT-W(F̃S ,Φb) = OPT-W(FS ,Φb)− P[S > b] · (ES∼FS
[S |S > b]− b) .

Consider the distribution G∗(x) = 1 + log FS(x), where x ∈ [F−1
S (1/e), F−1

S (1)]. [3] show that

Ep∼G∗[W(p; F̃S ,Φb)] ≥
(

1− 1

e

)

· OPT-W(F̃S ,Φb).

Consequently, substitution reveals that

Ep∼G∗ [W(p;FS ,Φb)] ≥
(

1− 1

e

)

·OPT-W(FS ,Φb) +
1

e
· P[S > b] · (ES∼FS

[S |S ≥ b]− b)

=

(

1− 1

e

)

·OPT-W(FS ,Φb) +
1

e
· E [(S − b)+] .

Because G∗ depends only on FS , it follows by linearity of expectation that

Ep∼G∗[W(p;FS , FB)] = Eb∼FB
Ep∼G∗[W(p;FS ,Φb)]

and
OPT-W(FS , FB) = Eb∼FB

[OPT-W(FS ,Φb)].

Taking expectations in the above yields

Ep∼G∗[W(p;FS , FB)] ≥
(

1− 1

e

)

·OPT-W(FS , FB) +
1

e
· E [(S −B)+]

=

(

1− 1− α

e

)

· OPT-W(FS , FB).

Theorem 22 (Theorem 12 in the main text). Given distributions FS and FB , the designer can
always select a price that achieves at least 1 − 1/e + 0.0001 of the optimal expected welfare. That
is:

inf
FS ,FB∈∆L1 (R+)

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
≥ 1− 1

e
+ 0.0001.
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Proof. Let E[(S −B)+] = α · OPT-W. If α ≥ 0.0003, then Proposition 11 yields

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
≥ 1− 1

e
+

α

e
> 1− 1

e
+ 0.0001.

If 0 < α < 0.0003, then consider p∗ := inf{p : P[S ≥ p] ≤ 1/5}. If P[B ≤ p∗] ≤ 1/5, then Lemma 20
yields

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
≥ W(p∗;FS , FB)

OPT-W(FS , FB)
≥ 17

25
.

Otherwise, if P[B ≤ p∗] > 1/5, then there exists some sufficiently small ε > 0 such that p0 = p∗ − ε
satisfies P[S ≥ p0] > 1/5 and P[B ≤ p0] > 1/5. Lemma 19 shows that this is a sufficient condition
to satisfy the hypotheses of Lemma 17, which implies:

sup
p∈R+

W(p;FS , FB)

OPT-W(FS , FB)
≥ 3

4
− 2

√
10α >

16

25
.

Finally, Proposition 10 covers the case of α = 0.

Theorem 23 (Theorem 13 in the main text). Given distributions FS and FB, for any (possibly
non-deterministic) mechanism G (where we let G be a distribution in [0, 1] and we set the price
F−1
S (G)) that uses only quantile distributional knowledge of the seller’s distribution, the designer

can achieve no better than 1−1/e of the total expected welfare under the first-best efficient outcome.
That is:

inf
FS ,FB∈∆L1 (R+)

sup
G∈∆([0,1])

W(G;FS , FB)

OPT-W(FS , FB)
= 1− 1

e
,

where W(G;FS , FB) denotes the expected welfare that the mechanism G achieves.

Before we present a formal proof, let us discuss a game-theoretic intuition behind this result.
We can view the situation as a game between two players, the designer and nature. The designer
tries to select a parameter x to maximize efficiency, and nature tries to select a distribution FS to
thwart the designer’s goal. Given the choice of x and FS , the buyer’s distribution FB is considered
to be worst possible with respect to the designer’s outcome. Our goal is to prove that there is a
strategy of nature such that no strategy of the designer achieves an approximation factor better
than 1− 1/e.

Due to von Neumann’s theorem, there are optimal mixed strategies Ξ and Φ. It is important
to keep in mind that these are randomized strategies: in the case of the designer, this means a
random choice of x; in the case of nature, this means a random choice of FS , (i.e., a probability
distribution over cumulative distribution functions FS , which is a more complicated object).

In order to simplify the game, let us make a few observations. Given x, FS and FB , the expected
outcome is given by taking an expectation over the buyer’s value b sampled from FB (because there
is no dependency between b and the choice of the price p and the seller’s value s). Therefore, we
might as well assume that the buyer’s value is deterministic, namely, the worst possible value b,
given x and FS . Furthermore, for each choice of FS and b, the values can be rescaled so that b = 1,
without affecting the approximation ratio (i.e., the ratio of welfare relative to first-best efficiency).
So we can assume without loss of generality that b = 1.

Further, given that b = 1, the seller’s distribution can be truncated at 1: any probability mass
above 1 can be moved to 1.9 This means that the first-best efficiency has value E[max{b, s}] = 1.

9There is a lemma making this argument in [3] but since we are proving the opposite bound, this lemma is not
formally needed here.
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Next, let us consider the strategy of nature. For a probability distribution FS , if there is
some mass between (0, 1), it only decreases the approximation ratio if we push this probability
mass towards 0 (the outcome possibly decreases, and the optimum is still 1). It is important here
that the probability mass is not concentrated on a single point – relative comparisons between
different possible values should still be non-trivial. However, we can assume for example that the
probability mass below 1 is uniform between [0, ε], with density y/ε. Considering this, the only
important parameter that governs the seller’s distribution is the probability of s between equal to
1, y = P[s < 1].

Hence, the game we are considering has pure strategies x for the designer and y for nature.
Randomized strategies are distributions over x and y. Given x, y the payoff function for the
mechanism (ignoring terms proportional to ε) is

V (x, y) = (1− y) + x · 1x<y.

This reflects the fact that with probability 1− y, the seller’s value is 1, in which case the outcome
is certainly 1 (since the buyer’s value is also 1). Otherwise, the seller’s value is close to 0; then the
trade occurs exactly when s < p and p < 1, and the outcome in that case is 1; otherwise close to
0. The event x < y is equivalent to the fact that p < 1, because y = FS(1). Given that x < y, the
probability that s < p is exactly x, because p = F−1

S (x). Therefore, x · 1x<y is the contribution to
the expected outcome in case the seller’s value is below 1.

We now derive the optimal mixed strategies. Let us assume that nature’s strategy is given by a
probability density function ρ(y). Then for a given (pure) designer’s strategy x, nature’s expected
payoff is

E[V (x, y)] = E[(1− y) + x · 1x<y] =

∫ x

0
(1− y)ρ(y) dy +

∫ 1

x
(1− y + x)ρ(y) dy. (†)

We posit that for an optimal nature strategy ρ(y), this quantity should be the same for every
x in the support of the optimal mechanism strategy. If not, then the designer’s strategy could be
modified to achieve a better outcome, by picking the x maximizing the quantity above. We are
trying to prove that the designer’s strategy is defined by g(x) = 1/x for x ∈ [1/e, 1]. Hence, let us
assume that the quantity in (†) is constant for x ∈ [1/e, 1]. By differentiating (†) with respect to
x, we obtain (for x ∈ [1/e, 1]),

∫ 1

x
ρ(y) dy − x ρ(x) = 0.

Note that for x = 1− ε, we obtain
∫ 1

1−ε
ρ(y) dy = (1− ε) ρ(1− ε).

This is a somewhat paradoxical conclusion. What this actually means is that the probability
distribution cannot be fully defined by a density function; there must be a discrete probability
mass at x = 1, which is equal to the density just below 1.10 Differentiating one more time, we get

−2ρ(x)− x ρ′(x) = 0.

This differential equation is easy to solve: the solution is ρ(y) = C/y2 for y ∈ (1/e, 1). There should
also be a discrete probability mass at y = 1 equal to C. The normalization condition implies that
C = 1/e. To complete the proof, we just have to show that there is no strategy of the designer
that achieves a factor better than 1− 1/e against this nature’s strategy.

10These arguments are not rigorous, but in any case we are just trying to guess the optimal form of nature’s
strategy.
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Proof. Motivated by the discussion above, we consider the following strategy of nature:

• With probability 1/e, set y = 1.

• With probability 1− 1/e, sample y ∈ [1/e, 1] with density ρ(y) = 1/(ey2).

Given y, nature’s value s is distributed as follows:

• With probability y, s ∈ [0, ε] uniformly at random.

• With probability 1− y, s = 1.

We claim that for any strategy of the designer, the approximation ratio is at most 1− 1/e against
this nature’s strategy. Since mixed strategies are convex combinations of pure strategies, it is
enough to consider pure strategies x ∈ [0, 1].

As we argued above, given x and y, the expected value of the game, up to O(ε) terms, is

V (x, y) = (1− y) + x · 1x<y.

We have the following cases:

• x ∈ [0, 1/e]. In this range, we certainly have x < y (because y is always at least 1/e). Thus,
V (x, y) = 1− y + x. In expectation over y, this quantity is

E[V (x, y)] = E[1− y + x] =

∫ 1

1/e
(1− y + x) · 1

ey2
dy +

1

e
· x

=

[

−1 + x

ey
− 1

e
ln y

]1

y=1/e

+
1

e
· x = 1− 2

e
+ x.

Since x ≤ 1/e, we have E[V (x, y)] ≤ 1− 1/e.

• x ∈ [1/e, 1). In this range, we have y ≤ x or y > x depending of the value of y. In the first
case, the value of the game is 1− y and in the second case it is 1− y + x. Thus we compute
the expected value as follows:

E[V (x, y)] =

∫ 1

1/e
(1− y) · 1

ey2
dy +

∫ 1

x
x · 1

ey2
dy +

1

e
· x

=

[

− 1

ey
− 1

e
ln y

]1

y=1/e

+

[

− x

ey

]1

y=x

+
1

e
· x

=

(

1− 2

e

)

+

(

1

e
− x

e

)

+
x

e
= 1− 1

e
.

• x = 1. Then we get the same expressions as above, except for the term 1
e · x, since the case

of y = 1 does not contribute anything. Therefore, again the value is at most 1− 1/e.

We conclude that there no strategy of the designer that achieves an expected welfare of more
than 1−1/e (neglecting O(ε) terms). The first-best efficiency is 1 (since the buyer’s value is always
1) and hence the approximation factor cannot be better than 1− 1/e.
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