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1 Introduction

Online platforms increasingly act as gatekeepers that enable producers to access downstream

markets, while also competing with producers in these downstream markets. A prominent

example is Amazon, which sells e-commerce and distribution services to producers in an

upstream market, while also selling AmazonBasics and other private-label products down-

stream. Should platforms be allowed to control whom they compete with in downstream

markets through their upstream market interactions?

Many regulators have emphasized that the potential conflict of interest that such plat-

forms face is a cause for antitrust concern. This was succinctly articulated by U.S. Senator

Elizabeth Warren in a 2019 article titled “Here’s How We Can Break Up Big Tech”:

“Many big tech companies own a marketplace, where buyers and sellers transact,

while also participating on the marketplace. This can create a conflict of interest

that undermines competition.”

Platforms such as Amazon, Apple, Facebook, and Google face increasing regulatory scrutiny

over this potential conflict of interest. For example, a 2020 U.S. House Majority Report

found that

“Amazon’s dual role as an operator of its marketplace that hosts third-party

sellers, and a seller in that same marketplace, creates an inherent conflict of

interest.”

The logic behind these regulatory concerns is that platforms can exploit their upstream

market power to quash rival producers, thereby reducing competition in downstream markets

and harming consumers. The “conflict of interest” that these platforms face can be quantified

by the following tradeoff: Any output that the platform sells downstream might increase

downstream revenue, but this also increases competition with rival producers and lowers the

downstream price. In turn, this reduces the value of the platform to rival producers, which

decreases upstream revenue.

In this paper we study the antitrust implications of a platform acting both as a producer

in a downstream market and an upstream supplier to rival producers. We find that banning

a monopolist platform from producing in downstream markets can only harm consumers

because platforms that produce positive output in equilibrium always reduce downstream

prices. Consequently, the claimed “conflict of interest,” or tradeoff between the platform’s

upstream and downstream profits, always benefits the consumer, at the expense of producers.

Intuitively, any output produced by the competitive fringe of producers is associated with

a vertical externality that resembles double marginalization, while any output produced by

1



the platform is only associated with a single marginalization effect. If the platform’s own

production costs are reduced, the corresponding substitution towards output produced by

the platform results in higher overall production in the downstream market, which bene-

fits consumers. However, when the platform is not a monopolist, meaning that producers

can access downstream markets through alternative distribution channels, platforms may

have an incentive to undermine this upstream market competition. For example, the plat-

form may profitably engage in “killer” horizontal acquisitions (acquire and then shuttering

smaller upstream competitors) or exclusive dealing (offer contracts that preclude producers

from accessing alternative distribution channels).1,2 These practices harm consumers by re-

ducing overall output in the downstream market and would therefore warrant the scrutiny

of antitrust authorities.

Our analysis introduces a general mechanism design framework for studying vertical

market structures involving a dominant platform. In particular, we consider a model in which

a platform sells a productive input to producers in an upstream market before competing

with these producers in a downstream market. We characterize the optimal menu of contracts

offered by the platform in the upstream market, assuming the platform seeks to maximize

its total upstream and downstream profits. In our formulation, producers have private

information about their costs, which gives rise to incentive and participation constraints.

We first consider the case in which the platform monopolizes the upstream market and

then add the possibility that producers have access to alternative distribution channels. In

each case the optimal menu of upstream contracts involves a nonlinear pricing schedule that

represents price discrimination in the form of quantity discounts.

The key technical difficulty that arises in solving for the optimal menu of upstream

contracts is that producers’ willingness to pay in the upstream market is endogenous to

the downstream market outcome. We overcome this problem by rewriting the mechanism

design problem as a nested optimization problem. First, the platform selects the optimal

upstream selling mechanism and its own level of downstream output subject to a market-

1These results also resonate with ongoing antitrust concerns with regard to online platforms. Antitrust
authorities have accused Amazon of limiting competition in upstream markets by acquiring smaller upstream
competitors and engaging in exclusive dealing. For example, Amazon acquired Diapers.com in 2010 for $545
million but shut down the company in 2017, citing a lack of profitability. Analysts have speculated that
Amazon always intended to eliminate Diapers.com following this acquisition. This example also resonates
with some of the concerns raised by Khan (2017). With regard to exclusive dealing, the 2020 US House
Majority Report quotes a former Amazon employee as stating that “It was not uncommon for Amazon to
use its brand standards policy to shut down a brand’s third-party seller account and force brands into an
exclusive wholesaler relationship.”

2The term killer acquisitions was original used in the context of the pharmaceutical industry (see Cun-
ningham et al. (2021) for a recent study). Recently this term has been applied more broadly, including to
acquisitions made by online platforms for the purpose of entrenching their market dominance.
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clearing constraint that specifies the price induced in the downstream market. This problem

resembles a nonlinear monopoly pricing involving a capacity constraint. Second, the platform

optimizes over the price induced in the downstream market. The market-clearing constraint

captures the impact of the upstream market selling mechanism on the downstream market

price, which in turn impacts the producers’ willingness to pay of producers in the upstream

market, as well as the platform’s own profits in the downstream market.

An implication of our consumer surplus analysis for antitrust policy is that banning

platforms from producing in downstream markets can only harm consumers. A similar

result holds if the platform is banned from selling downstream market access in the upstream

market. This suggests that there is more to the “conflict of interest” identified by antitrust

authorities than meets the eye. Naturally, consumers would be better off if the platform’s

upstream business interests were separated from its downstream business interests. However,

this may be difficult to achieve in practice and our analysis shows that simple bans will

only serve to make consumers worse off. This resonates with recent antitrust policies. For

example, in 2019 India introduced new laws—intended to protect small local businesses—that

prevented online retailers from selling products through vendors in which they hold an equity

stake (BBC News, 2019). Amazon lobbied strongly against this new law, which prevented it

from selling AmazonBasics products on its own platform. Our analysis suggests that while

such laws should indeed protect the interests of producers, they may harm consumers.

The remainder of this paper is structured as follows. First, we discuss our modelling

approach and results in the context of the related literature on vertical control in Section

1.1, before surveying some additional related literature in Section 1.2. Section 2 introduces

our general setup. In Section 3 we characterize the optimal menu of contracts offered by

the platform when it monopolizes the upstream market, and investigate the implications

for consumers and producers. In Section 4 we extend this analysis by considering the case

where the platform is a dominant firm in the upstream market, providing scope to discuss

the implications of acquisitions and exclusive dealing in the upstream market. Section 5

concludes the paper.

1.1 Interpretation of the model and relation to vertical control

First and foremost, this paper contributes to the vast literature on vertical integration and

foreclosure in vertical market structures (see Riordan (2005) and Rey and Tirole (2007)

for comprehensive surveys). As mentioned, a vertical externality that resembles double

marginalization plays an important role in our consumer surplus analysis. Most models of

vertical market structures assume complete information, where double marginalization only
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arises when restrictions are imposed on the contracting space (for example, by restricting at-

tention to posted-price mechanisms).3 If one allows for more general contracts (for example,

by considering two-part tariffs) the double marginalization effect vanishes. This result raises

important questions concerning the robustness of double marginalization, particularly since

the elimination of this effect is frequently cited as a defence for vertical mergers. In this pa-

per we study an incomplete information setting, where a double marginalization effect arises

without imposing any restrictions on the contracting space. Since producers have private

information concerning their production costs, the platform must pay producers information

rents in the upstream market. This prevents it from extracting the full monopoly profit.

More generally the “single monopoly profit theory” originating with the Chicago school

(see Posner, 1976; Bork, 1978) contends that exclusionary conduct—such as vertical mergers

and exclusive dealing—cannot profitably expand the market power of an upstream firm

that already captures the full monopoly profit.4 While there has been a recent upsurge

of interest in the antitrust implications of exclusionary conduct, this neutrality result can

make these practices difficult to study in formal models. In our model the “single monopoly

profit theory” does not hold for two reasons. First, and as previously discussed, we assume

that producers possess private information concerning their production costs. Moreover, in

Section 4 we also assume that producers have access to alternative distribution channels and

do not necessarily require the services of the platform to access the downstream market.

These factors prevent the platform from capturing the full monopoly profit in the upstream

market, and provide scope for studying practices such as exclusive dealing.

1.2 Related literature

This paper is closely related to recent work by Hagiu, Teh, and Wright (2020), Anderson

and Bedre-Defolie (2021), and Madsen and Vellodi (2021), who are similarly motivated by

anticompetitive allegations against platforms such as Amazon. However, there are several

important differences. In particular, Madsen and Vellodi examine how platforms may use

information about downstream demand to decide whether or not to launch their own version

of the same product. By contrast, we focus on the platform’s tradeoff between upstream and

downstream revenue in a model with no aggregate uncertainty in the downstream product

market. Equivalently, the platform may already have detailed information about the down-

stream product market, or it may simply be unable to commit to making its entry decision

3For two recent noteable exceptions, see Loertscher and Marx (2021a) and Choné et al. (2021). See
also Loertscher and Marx (2021b) for a recent survey of incomplete information modelling in industrial
organization.

4Our previous observation concerning double marginalization in complete information models is essentially
a special case of this more general theory.
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independently of marketplace data that it collects. While Hagiu et al. and Anderson and

Bedre-Defolie also study the platform’s tradeoff between upstream and downstream revenue,

their papers and ours differ in modeling approaches. Hagiu et al. and Anderson and Bedre-

Defolie provide a detailed model of the downstream product market: Hagiu et al. consider

a model involving vertically differentiated goods, while Anderson and Bedre-Defolie study

a market involving horizontally differentiated goods. By contrast, we adopt a parsimonious

model of the downstream product market, but enrich the platform’s upstream contracting

space. This allows us to study price the implications of discrimination in the upstream

market involving the platform and rival producers, and analyze its effects on downstream

consumers.

Our paper also relates to a growing literature on platforms, including early contributions

by Rochet and Tirole (2003, 2006), Armstrong (2006), and Weyl (2010). Many of these

papers focus on “cross-side” externalities between different sides of the platform: more con-

sumers on the platform increases its value to producers, and vice versa. While a similar

effect arises in our model, it is caused by a pecuniary externality: selling the upstream in-

put to more producers increases downstream production, thereby lowering the price of the

downstream good and benefiting consumers.

Our paper is also connected to work by Martimort and Stole (2009), Calzolari and Deni-

colò (2013), and Calzolari and Denicolo (2015) on exclusive contracts in environments with

incomplete information. Like these papers, we study the anticompetitive implications of

exclusive contracts and find that the ability to write exclusive contracts generally enhances

the platform’s profitability. We contribute to this literature by considering a setting in which

the platform writes contracts in an upstream market and the structure of the optimal menu

of contracts depends on the equilibrium price in a downstream market. This provides a

tractable framework for investigating the implications of exclusive dealing for consumers in

downstream markets.5

Finally, our work is related to the growing literature on partial mechanism design, or

“mechanism design with a competitive fringe,” which includes early contributions by Philip-

pon and Skreta (2012), Tirole (2012), and Fuchs and Skrzypacz (2015). More recent work

in this literature include Loertscher and Muir (2021) and Kang (2021b). Like these papers,

we limit the ability of the platform to monopolize the upstream market by giving producers

access to an outside option. This places additional constraints on the upstream contracts

that the platform can write, which we view as realistically capturing upstream competitive

5Another difference is that the platform in our model can also produce in the downstream market. The
ability of the platform to directly capture a share of downstream revenue limits the profitability of exclusive
contracts, and provides an additional procompetitive effect not present in these earlier papers.
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pressures that the platform might face. To overcome the complications that arise due to

these constraints, we adapt and extend the methodological approach of Kang (2021a) to

obtain a tractable analysis.

2 Model

We study a vertical structure in which interactions between a platform, producers and con-

sumers are divided into an upstream market and a downstream market, as illustrated in

Figure 1. In the upstream market the platform sells downstream market access to produc-

ers; and in the downstream market both the platform and the producers sell a final good

to consumers. The platform raises profits by selling access in the upstream market, as well

as by selling the final good in the downstream market. Producers can bypass the platform

entirely and sell through alternative, non-platform distribution channels for a separate fee.

One could think of this fee as representing the cost associated with producers using in-house

e-commerce, distribution and delivery services. Producers therefore determine the quantity

of output that they sell through the platform, as well as the quantity of output that they

sell through alternative channels. We assume that, from the perspective of consumers, final

goods purchased on the platform and through alternative channels are perfect substitutes.6

Downstream market The downstream market is characterized by competition between a

dominant firm (the platform) and a competitive fringe (producers). Let Q1 denote the total

quantity of output that producers sell to consumers through the platform and Q2 denote

the total quantity of output producers sell to consumers through alternative channels. Let

y denote the total quantity of output that the platforms sells to consumers. As previously

stated, we assume that consumers view goods sold through the platform and non-platform

markets as perfect substitutes. We let D : R≥0 → R≥0 and P : R≥0 → R≥0 respectively de-

note the demand function and the inverse demand function associated with downstream

consumers. The aggregate quantities y+Q1 and Q2 and the downstream price p then satis-

fies p = P (y + Q1 + Q2) and y + Q1 + Q2 = D(p). We assume that the functions P and D

are decreasing and continuously differentiable functions.

6Long before the rise of e-commerce and large online platforms, it was already common for bricks-
and-mortar retailers (such as Safeway or Macy’s) to sell other companies’ products, while simultaneously
competing against them by selling store brands. The analysis of this paper could apply equally well to this
situation. However, as highlighted in the introduction, the rise of large online platforms has resulted in
renewed interest in the antitrust issues surrounding such market structures.
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Figure 1: Illustration of vertical structure involving a platform, producers and consumers.

Producers We assume that there is a mass m > 0 of producers. Producers can produce

any positive quantity q ≥ 0 of total output and are distinguished by their linear production

costs c ∈ [c, c] ⊂ R. These costs are distributed according to an absolutely continuous

distribution F whose density f has full support on [c, c] and these costs are the private

information of each producer. We assume that for a producer with a linear production cost

of c ∈ [c, c], the total cost of production C(q) of producing the quantity q ≥ 0 is given by

C(q) = cq + g(q),

where g is a strictly convex function that is common to all producers and satisfies the Inada

conditions g(0) = 0, g′ > 0 on (0,∞), g′(0) = 0 and limq→∞ g
′(q) = ∞. We also assume

that the per-unit cost of accessing a non-platform distribution channel is given by t2 > 0

and suppose that the platform charges a per unit fee of t1. The payoff of producer of type

c that distributes the quantity q1 ≥ 0 using the platform and the quantity q2 ≥ 0 using a

non-platform distribution channel is then given by

(p− c)(q1 + q2)− g(q1 + q2)− t1q1 − t2q2.

Here, we have constructed the cost functions of producers in such a way that we can
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adopt a first-order approach when we characterize the set of upstream contracts offered by

the platform. If we were to set g(q) ≡ 0 and consider a setting with linear production

costs, then we could not adopt a first-order approach and would need to introduce capacity

constraints in order to have a well-defined problem. We discuss this generalization in Section

4.4. Aside from restricting attention to strictly convex production costs, the other substantive

restriction we have imposed here is that producers only have private information concerning

a linear component of their production costs. This simplifies the analysis considerably as

the downstream price p, which is endogenous to the set of contracts offered in the upstream

market, also linearly enters producers’ payoffs.

Platform The platform designs the selling mechanism in the upstream market. By the

revelation principle, without loss of generality we can restrict attention to direct, incentive

compatible mechanisms 〈q1, t1〉. The allocation rule q1 : [c, c] → R≥0 maps the report ĉ of

each producer to the quantity of output q1(ĉ) sold by that producer through the platform

channel. The payment rule t1 : [c, c] → R≥0 maps the report ĉ of each producer to the

per-unit payment made by that producer to the platform. One can equivalently think of

the platform as posting the menu of contracts 〈q1, t1〉 and then allowing each producer to

select their desired contract from this menu. We let cP denote the linear production cot of

the platform and assume that the cost to the platform of producing y ≥ 0 units of output is

given by

CP (y) = cPy + g(y).

That is, we assume the platform has access to a production technology that is similar to that

of the producers.7 We also assume that the platform has a cost advantage over its upstream

rivals (and, consequently, is also a dominant firm in the upstream market) and can provide

producers with access to the downstream market at zero marginal cost. Finally, to ensure

that we have a non-trivial problem where it’s possible for the platform to extract a strictly

positive level of profit from the upstream market, we assume that P (0)− c > 0.8

Timing The timing of the game is as follows. First, the platform announces the upstream

market selling mechanism 〈q1, t1〉 for the upstream market and commits to a level of pro-

duction y ≥ 0 in the downstream market. Given y and 〈q1, t1〉, each producer then decides

7Note that one important difference here is that the output produced by the platform and the output
produced by an individual producer are measured in different units: the platform produces units of aggregate
output, whereas the output produced by an individual producer is infinitesimal.

8By continuity, this is a sufficient condition for a positive mass of producers to enter the downstream
market when the platform provides its services at zero cost.
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how much output q to produce in total, the quantity of output q1 that they sell through the

platform and the quantity of output q2 that they sell through non-platform channels. The

platform, producers and consumers then participate in the downstream market.

3 Monopoly platform in upstream market

In this section, we consider a simple application of our general framework to build intuition

that will be useful in the full treatment that we provide in Section 4. To best illustrate the

economic insights, we make the major simplifying assumption that producers do not have

access to alternative distribution channels other than the platform. Thus the platform exerts

monopoly power in the upstream market. Formally, this assumption is equivalent to setting

q2 = 0. For notational simplicity, we omit variable subscripts throughout this section.

3.1 Optimal menu of upstream contracts

We now derive the optimal upstream selling mechanism absent downstream production on

the part of the platform. What distinguishes the problem faced by the platform from a

standard mechanism design problem is that the valuations of producers (which depend on

the price p in the downstream market) are endogenous to the upstream market mechanism

〈q, t〉. We solve this fixed point problem by rewriting to platform’s problem as a nested

optimization problem. First, we fix the price p in the downstream market and determine the

optimal upstream selling mechanism, subject to the producers’ incentive compatibility and

individual rationality constraints, we well as the constraint that this mechanism induces the

price p in the downstream market. We then maximize over the price p that is induced in the

downstream market. Formally, this approach is justified by the following lemma.

Lemma 1. An incentive compatible and individually rational upstream selling mechanism

〈q, t〉 induces the price p in the downstream market if and only if the market-clearing con-

straint

D(p) = m

∫ c

c

q(c) dF (c). (MC)

is satisfied.

Given any direct selling mechanism 〈q, t〉 downstream market price p, the payoff for a

producer of type c that reports to be of type ĉ is given by

(p− c)q(ĉ)− g(q(ĉ))− t(ĉ)q(ĉ).

9



Incentive compatibility then requires

(p− c)q(c)− g(q(c))− t(c)q(c) ≥ (p− c)q(ĉ)− g(q(ĉ))− t(ĉ)q(ĉ) ∀c, ĉ ∈ [c, c] (IC)

and individual rationality requires

(p− c)q(c)− g(q(c))− t(c)q(c) ≥ 0 ∀c ∈ [c, c]. (IR)

Putting all of this together, the mechanism design problem faced by the platform is given

by

max
p≥0

max
q:[c,c]→R≥0,
t:[c,c]→R

{
m

∫ c

c

t(c)q(c) dF (c)

}
s.t. (p− c)q(ĉ)− g(q(ĉ))− t(c)q(c) ≥ (p− c)q(ĉ)− g(q(ĉ))− t(ĉ)q(ĉ) ∀c, ĉ ∈ [c, c], (IC)

(p− c)q(c)− g(q(c))− t(c)q(c) ≥ 0 ∀c ∈ [c, c], (IR)

D(p) = m

∫ c

c

q(c) dF (c). (MC)

We now focus on the inner optimization problem and start by using the incentive compati-

bility constraints to characterize the transfer rule t in terms of the allocation rule q. To that

end, we have the following useful lemma.

Lemma 2. The function v(q, c) := (p − c)q − g(q) exhibits strict increasing differences in

(q,−c).

Lemma 2 implies that any allocation rule q can be implemented by an incentive compat-

ible direct mechanism if and only if the allocation rule q is decreasing in c ∈ [c, c] (see, for

example, Proposition 1 in Rochet (1987)). Given any decreasing allocation rule q, applying

the Envelope Theorem (see Milgrom and Segal, 2002) then yields

(p− c)q(c)− g(q(c))− t(c)q(c) =

∫ c

c

q(x) dx+ k,

where k is an arbitrary constant. This last result, which pins down the corresponding

transfer rule t up to an arbitrary constant, is known as payoff equivalence. The individual

rationality constraint associated with producers of type c implies that k ≥ 0. Rearranging

this expression we have

t(c)q(c) = (p− c)q(c)− g(q(c))−
∫ c

c

q(x) dx− k.
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The platform’s upstream revenue can therefore be written

RUpstream = m

∫ c

c

t(c) dF (c) =

∫ c

c

[
(p− c)q(c)− g(q(c))−

∫ c

c

q(x) dx

]
dF (c)− k.

Using ∫ c

c

∫ c

c

q(x) dx dF (c) =

∫ c

c

q(x)

∫ x

c

dF (c) dx =

∫ c

c

q(x)
F (x)

f(x)
dF (x)

as well as the fact that we must have k = 0 under any optimal mechanism, we can rewrite

this as

RUpstream = m

∫ c

c

[(
p− c− F (c)

f(c)

)
q(c)− g(q(c))

]
dF (c).

The optimization problem faced by the platform is therefore given by

max
p≥0

max
q:[c,c]→R≥0

{
m

∫ c

c

[(
p− c− F (c)

f(c)

)
q(c)− g(q(c))

]
dF (c)

}
s.t. D(p) = m

∫ c

c

q(c) dF (c), q(·) decreasing.

To complete solving the inner problem, we consider its dual. Letting λ denote the Lagrange

multiplier (or shadow price) associated with the market-clearing constraint (which is es-

sentially a quantity constraint) and introducing the virtual type function Γ(c) = c + F (c)
f(c)

,

the Lagrange dual function (see, for example, Chapter 5 in Boyd and Vandenberghe, 2004)

associated with the inner problem is given by

L(p, λ) := max
q:[c,c]→R≥0

{
m

∫ c

c

[(p− Γ(c)− λ) q(c)− g(q(c))] dF (c) + λD(p)

}
(1)

s.t. q(·) decreasing.

The dual problem is therefore given by

min
λ∈R
L(p, λ).

and the designer’s full optimization problem becomes

max
p≥0

min
λ∈R
L(p, λ). (2)
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Since strong duality holds, solving the dual problem yields the value of the primal problem

(the inner problem under the optimal mechanism). Moreover, since the primal problem is

convex, the provided the solution to the dual problem is feasible for the primal problem,

solving the dual problem also yields the optimal solution to the primal problem.

We now complete our characterization of the optimal menu of upstream contracts offered

by the platform. First, since g is a strictly convex function, the solution qM to the relaxed

version of the maximization problem given in (1) satisfies the first-order condition

g′(qM(c)) = (p− Γ(c)− λ)+ .

Provided we have a problem that is regular in the sense of Myerson (1981) and Γ is increasing

in c, this solution also satisfies the constraint that q is decreasing in c. Note that p − λ >
Γ(c) = c must hold under any candidate solution. Otherwise no producers would enter the

downstream market and the platform makes zero profit, which cannot be optimal since by

assumption we have c− P (0) > 0. We can then rewrite (2) as

max
p≥0

min
λ∈R

{
m

∫ min{Γ−1(p−λ),c}

c

[
(p− Γ(c)− λ) qM(c)− g(qM(c))

]
dF (c) + λD(p)

}
,

where, for c ∈ [c,min{Γ−1(p− λ), c}], qM is characterized by

g′(qM(c)) = p− Γ(c)− λ.

The optimal value λM of the Lagrange multiplier is in turn pinned down by the market-

clearing constraint

m

∫ min{Γ−1(p−λM ),c}

c

qM(c) dF (c) = D(p). (3)

Finally, we can determine the optimal price pM that the monopoly induces in the downstream

market by solving

max
p≥0

{
m

∫ min{Γ−1(p−λM ),c}

c

[(
p− Γ(c)− λM

)
qM(c)− g(qM(c))

]
dF (c) + λMD(p)

}
.
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The corresponding first-order condition is given by

m

∫ Γ−1(pM−λM )

c

[(
1− dλM

dp

∣∣∣∣
p=pM

)
qM(c) +

dqM(c)

dp

∣∣∣∣
λ=λM , p=pM

(
p− Γ(c)− λM − g′(qM(c))

)]
dF (c)

+ λMD′(pM) +
dλM

dp

∣∣∣∣
p=pM

D(pM) = 0.

Exploiting the first-order condition that pins down qM , this simplifies to

m

(
1− dλM

dp

∣∣∣∣
p=pM

)∫ Γ−1(pM−λM )

c

qM(c) dF (c) + λMD′(pM) +
dλM

dp

∣∣∣∣
p=pM

D(pM) = 0.

Using the market-clearing constraint that pins down λM then yields(
1− dλM

dp

∣∣∣∣
p=pM

)
D(pM) + λM(pM)D′(pM) +

dλM

dp

∣∣∣∣
p=pM

D(pM) = 0

and simplifying this last expression we have

D(pM) = −λM(pM)D′(pM). (4)

Summarizing all of these calculations, we have the following proposition.

Proposition 1. Suppose that the distribution F is regular in the sense that Γ(c) = c+ F (c)
f(c)

is increasing in c ∈ [c, c]. Then for all c ∈ [c, c], the optimal upstream allocation rule qM and

the optimal price pM that the platform induces in the downstream market are characterized

by the equations

g′(qM(c)) =
(
pM − Γ(c)− λM

)
+
, m

∫ c

c

qM(c) dF (c) = D(pM) and D(pM) = −λMD′(pM).

Moreover, for all c ∈ [c, c], the optimal transfer rule tM is in turn pinned down by

tM(c)qM(c) = (p− Γ(c)− λM)qM(c)− g(qM(c)).

For the special case involving a quadratic cost function g(q) = βq2/2 with β > 0 and producer
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types that are uniformly distributed on the unit interval [0, 1] we have

qM(c) =

(
pM − 2c− λM

β

)
+

, λM(pM) =

pM − 2
√

βD(pM )
m

, βD(pM) ≤ m,

pM − βD(pM )
m
− 1, βD(pM) > m

and D(pM) = −λMD′(pM).

Moreover, if βD(pM) ≤ 1 then the corresponding optimal transfer rule tM is given by

tM(c) =
pM + 2c+ 3λM

4
1

(
c ∈

[
c,
pM − λM

2

])
(5)

and if βD(pM) > 1 then this transfer rule is

tM(c) =
pM + 2c+ 3λM

4
+

(pM − 2− λM)2

4(pM − 2c− λM)
. (6)

As proposition 1 shows, the allocation rule qM translates to a nonlinear pricing schedule

tM and represents a form of second-degree price discrimination that minimizes the informa-

tion rents of the producers. Moreover, we have the following corollary, which shows that the

optimal nonlinear pricing schedule exhibits quantity discounts.

Corollary 1. The schedule TM(c) = (p − Γ(c) − λM)qM(c) − g(qM(c)) of total payments

made by producers to the platform is concave in the quantity qM(c).

From the general characterization

g′(qM(c)) =
(
pM − Γ(c)− λM

)
+

we can see that, relative to efficiency, qM exhibits two distortions. First, the platform

restricts the quantity that is sold in the upstream market in order to lower the information

rents that it pays to producers. This distortion corresponds to the fact that producers’

virtual costs Γ(c) > c rather than actual costs c appear in the characterization of qM .

Second, the platform restricts the quantity sold upstream in order to raise the downstream

price and increase producers’ upstream valuations. This distortion corresponds to that fact

that λM > 0 appears in the characterization of qM . We therefore see that this problem gives

rise to a vertical externality that is similar to double marginalization.
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3.2 Implications of downstream platform production

We now extend the simple model considered in Section 3.1 by introducing the possibility

that the platform also produces output in the downstream market. Intuitively, the platform

now faces a tradeoff between its upstream and downstream profits. Any additional profit

that the platform makes in the upstream market is associated with a lower equilibrium price

in the downstream market and a negative impact on the platform’s own downstream profits.

Consequently, when the platform becomes more efficient at producing in the downstream

market (captured by a lower platform cost cP ) and its downstream profits become relatively

more important, it will reduce the quantity that it sells in the upstream market. This is

captured by the following proposition, which we prove by adopting a monotone comparative

statics approach.

Proposition 2. Let R(Q) = QP (Q) denote the revenue associated with selling the total

quantity Q in the downstream market and suppose that R is a concave function. Then as

the platform’s cost cP decreases, the platform increases its own downstream production yM

and decreases the total quantity
∫ c
c
qM(c) dF (c) that it sells in the upstream market.

Unsurprisingly, producers are adversely affected when the platform also sells output in the

downstream market and producer surplus is increasing in the platform’s linear cost cP . The

implications of platform production for consumer surplus in the downstream market is more

subtle and cannot be determined using a simple monotone comparative statics approach.

We now characterize the optimal menu of upstream contracts 〈qM , tM〉, level of platform

output yM and the downstream market price pM and investigate the implications of platform

production for consumer surplus.

When the platform also produces in the downstream market, its nested optimization

problem becomes

max
p≥0

max
y≥0,

q:[c,c]→R≥0

{
m

∫ c

c

[(p− Γ(c)) q(c)− g(q(c))] dF (c) + y(p− cP )− g(y)

}

s.t. D(p) = m

∫ c

c

q(c) dF (c) + y, q(·) decreasing.

Letting λ denote the Lagrange multiplier associated with the market-clearing constraint, the
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Lagrange dual function is now given by

L(p, λ) := max
y≥0,

q:[c,c]→R≥0

{
m

∫ c

c

[(p− Γ(c)− λ) q(c)− g(q(c))] dF (c) + y(p− cP − λ)− g(y)

}
+ λD(p)

s.t. q(·) decreasing.

Maintaining our assumption that we have a regular mechanism design problem and the

function Γ is increasing, the optimal allocation rule is still characterized by

g′(qM(c)) = (p− Γ(c)− λ)+ .

Similarly, the platform’s optimal level of production is characterized by

g′(yM) = (p− cP − λ)+ . (7)

Note that any candidate solution must be such that p−λ > 0 because otherwise the platform

would make zero profit in both the upstream and the downstream markets, which cannot be

optimal. The designer’s full optimization problem then becomes

max
p≥0

min
λ∈R

{
m

∫ min{Γ−1(p−λ),c}

c

[
(p− Γ(c)− λ) qM(c)− g(qM(c))

]
dF (c) + yM(p− cP − λ)

− g(yM) + λD(p)

}
,

where yM is characterized by (7) and, for c ∈ [c,min{Γ−1(p− λ), c}], qM is characterized by

g′(qM(c)) = (p− Γ(c)− λ) .

The optimal value λM of the Lagrange multiplier is pinned down by the first-order condition

m

∫ min{Γ−1(p−λM ),c}

c

qM(c) dF (c) + yM = D(p). (8)

This first-order condition shows that for a given value of p, a decrease in cP must lead to an

increase in λM so that the left-hand-side of (8) remains constant. Intuitively, if cP decreases

then the platform’s equilibrium level of output increases and the price in the downstream

market will only remain constant if this increase is offset by a corresponding decrease in the
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output produced by the competitive fringe. Finally, we determine the optimal price pM by

solving

max
p≥0

{
m

∫ min{Γ−1(p−λM ),c}

c

[(
p− Γ(c)− λM

)
qM(c)− g(qM(c))

]
dF (c)

+ yM(p− cP − λM)− g(yM)

}
,

The corresponding first-order condition is given by

m

(
1− dλM

dp

∣∣∣∣
p=pM

)∫ min{Γ−1(pM−λM ),c}

c

qM(c) dF (c) + λM(pM)D′(pM) +
dλM

dp

∣∣∣∣
p=pM

D(pM)

+

(
1− dλM

dp

∣∣∣∣
p=pM

)
yM = 0.

Using the first-order condition given in (8) we have(
1− dλM

dp

∣∣∣∣
p=pM

)(
D(pM)− yM

)
+ λM(pM)D′(pM) +

dλM

dp

∣∣∣∣
p=pM

D(pM)

+

(
1− dλM

dp

∣∣∣∣
p=pM

)
yM = 0

and simplifying this last expression again yields

D(pM) = −λM(pM)D′(pM).

Summarizing all of this, we have the following proposition.

Proposition 3. Suppose that the distribution F is regular in the sense that Γ(c) = c+ F (c)
f(c)

is increasing in c ∈ [c, c]. Then for all c ∈ [c, c], the optimal upstream allocation rule qM ,

the optimal level of downstream platform production yM and the optimal price pM that the

platform induces in the downstream market are characterized by the equations

g′(qM(c)) =
(
pM − Γ(c)− λM

)
+
, g′(yM) =

(
pM − cP − λM

)
+
,

m

∫ c

c

qM(c) dF (c) + yM = D(pM), and D(pM) = −λMD′(pM).
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Moreover, for all c ∈ [c, c], the optimal transfer rule tM is in turn pinned down by

tM(c)qM(c) = (p− c)qM(c)− g(qM(c))−
∫ c

c

qM(x) dx.

Next, consider the special case involving a quadratic cost function u(q) = β q
2

2
with β > 0

and producer types that are uniformly distributed on the unit interval [0, 1]. Then we have

yM = 0 and the solution from Proposition 2 applies if cP ≥ cP , where the cutoff cP is given

by

cP =

2
√

βD(pM )
m

, βD(pM) ≤ m

1 + βD(pM )
m

, βD(pM) > m.

If cP < cP then we have yM > 0 and the solution to the platform’s problem is given by

qM(c) =

(
pM − 2c− λM

β

)
+

, yM =
pM − cP − λM

β
,

λM =

p+
2−2
√

1+mcP+βmD(p)

m
, cP + βD(p) ≤ 2 +m

p− m+cP+βD(p)
1+m

, cP + βD(p) > 2 +m
and D(pM) = −λMD′(pM).

Moreover, if cP + βD(pM) ≤ 2 +m then the corresponding optimal transfer rule is given by

(5) and if cP + βD(pM) > 2 +m then the corresponding transfers are given by (6).

Proposition 2 shows that the platform’s equilibrium output yM decreases in cP , while the

total equilibrium quantity m
∫ c
c
qM(c) dF (c) that it sells in the upstream market increases

in cP . This proposition, which adopted a simple monotone comparative statics approach,

was silent with regard to how the total quantity yM + m
∫ c
c
qM(c) dF (c) supplied in the

downstream market varies with cP . However, we are now in a position to prove that this

aggregate quantity in fact decreases in cP .

Proposition 4. The equilibrium quantity yM +m
∫ c
c
qM(c) dF (c) supplied in the downstream

market decreases in cP . Consequently, the downstream market price pM increases in cP and

consumer surplus decreases in cP .

The previous proposition shows that the platform’s tradeoff between upstream and down-

stream profits protects consumers. However, producers are harmed because they each pro-

ducer a lower level of output, which reduces their total information rents.9 Intuitively, we

9Note that producers are not directly harmed by the reduction in the downstream equilibrium price.
Since this component of producers valuation is not private information, the platform can extract it in the
upstream market.
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can think of the platform as a downstream monopoly that has access to two production

technologies: it can use the competitive fringe to produce output and it can produce output

itself. Since the platform must pay information rents to producers, the output it produces

using the competitive fringe exhibits a vertical externality akin to double marginalization.

However, the output that the platform produces itself does not. Consequently, as cP de-

creases and the platform substitutes away from downstream production that exhibits this

double marginalization effect, consumers benefit.

4 Dominant platform in upstream market

We now generalize our analysis by returning to the full model introduced in Section 2.

That is, we consider the possibility that sellers have access to non-platform distribution

channels. Following our approach in the previous section we first characterize the optimal

menu of upstream selling mechanisms absent any downstream production on the part of the

platform. We then consider several extensions of this baseline case.

4.1 Optimal menu of upstream contracts

We now derive the optimal menu of contracts the platform offers in the upstream market,

assuming that the platform does not produce its own output in the downstream market. For

now, we also assume that the platform cannot engage in exclusive dealing. Specifically, we as-

sume that the platform cannot monitor producers’ use of non-platform distribution channels

and after selecting the desired platform contract 〈q1, t1〉, producers are free to sell any quan-

tity q2 ≥ 0 through non-platform distribution channels. Given a feasible downstream market

price p and an incentive compatible and individually rational direct mechanism 〈q1, t1〉, the

optimal level of output q∗2(q1(c), c) that a producers of type c then sells through non-platform

distribution channels is given by

q∗2(q1(c), c) = arg max
q2≥0

{(p− c)(q1(c) + q2)− g(q1(c) + q2)− t1(c)q1(c)− t2q2}.

The quantity q∗2(q1(c), c) therefore satisfies the first-order condition

g′ (q1(c) + q∗2(q1(c), c)) = (p− c− t2)+ .

Letting T1(c) = t1(c)q1(c) denote the total payment that a producer of type c makes to

the platform under a given direct mechanism 〈q1, t1〉, the platform now solves the nested
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optimization problem given by

max
p≥0

max
q1:[c,c]→R≥0,
T1:[c,c]→R

{
m

∫ c

c

T1(c) dF (c)

}
s.t. (p− c)(q1(c) + q∗2(q1(c), c)− q1(ĉ)− q∗2(q1(ĉ), c))− g(q1(c) + q∗2(q1(c), c))

+ g(q1(ĉ) + q∗2(q1(ĉ), c)) ≥ T1(c)− T1(ĉ) + t2(q∗2(q1(c), c)− q∗2(q1(ĉ), c)) ∀c, ĉ ∈ [c, c] (IC)

(p− c)(q1(c) + q∗2(q1(c), c))− g(q1(c) + q∗2(q1(c), c))− T1(c)− t2q∗2(q1(c), c)

≥ max
q2≥0
{(p− c− t2)q2 − g(q2)} ∀c ∈ [c, c], (IR)

g′ (q1(c) + q∗2(q1(c), c)) = (p− c− t2)+ ∀c ∈ [c, c], (FOC)

D(p) = m

∫ c

c

(q1(c) + q∗2(q1(c), c)) dF (c). (MC)

However, we can substantially simplify this problem by exploiting the following observation:

without loss of generality we can focus on equilibria such that q∗2(q1(c), c) = 0 for all c ∈ [c, c].

From the perspective of producers, the productive inputs offered by both the platform and

the non-platform channels are perfect substitutes. Consequently, the platform can always

offer contracts that essentially replicate the outside option and ensure that all producers set

q∗2(q1(c), c) = 0 in equilibrium. From the perspective of the platform, it provides productive

inputs in the upstream market at zero marginal cost. Consequently, it is never optimal for it

to offer a set of upstream contracts that induces producers to sell a positive mass of output

through non-platform channels. Formally, we have the following lemma.

Lemma 3. Without loss of generality we can restrict attention to incentive compatible

and individually rational direct mechanisms 〈q1, t1〉 such that g′(q1(c)) ≥ (p− c− t2)+ and

q∗2(q1(c), c) = 0 for all c ∈ [c, c].

Lemma 3 shows that when producers can access non-platform distribution channels, this

constrains the platform’s ability to restrict the total quantity sold in the upstream market.

As we saw in the previous section, by restricting the quantity it sells upstream, the platform

can extract higher rents from producers and put upward pressure on the downstream market
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price. Using Lemma 3 we can now rewrite the platform’s problem as

max
p≥0

max
q1:[c,c]→R≥0,
T1:[c,c]→R

{
m

∫ c

c

T1(c) dF (c)

}
(9)

s.t. (p− c)(q1(c)− q1(ĉ)) ≥ g(q1(c))− g(q1(ĉ)) + T1(c)− T1(ĉ) ∀c, ĉ ∈ [c, c], (IC)

(p− c)q1(c)− g(q1(c))− t1(c)q1(c) ≥ max
q2≥0
{(p− c− t2)q2 − g(q2)} ∀c ∈ [c, c], (IR)

g′ (q1(c)) ≥ (p− c− t2)+ ∀c ∈ [c, c], (LP)

D(p) = m

∫ c

c

(q1(c) + q∗2(q1(c), c)) dF (c). (MC)

This is similar to the problem that we solved in Section 3.1. However, we now have a set of

quantity constraints which insure that no producers sell a positive quantity of output through

non-platform distributions channels after signing a contract with the platform. Adapting the

terminology and notation of Calzolari and Denicolo (2015), we refer to these as limit pricing

constraints and let qlim
1 denote the allocation rule that satisfies q′(qlim

1 (c)) = (p− c− t2)+.10

We also have a set of type-dependent individual rationality constraints which ensure that the

producers don’t bypass the platform altogether and only utilize non-platform distribution

channels. Since we now have a mechanism design problem involving a type-dependent outside

option, we solve this problem by adopting the approach of Jullien (2000). Specifically, we

again consider the indirect payoff function

v(q1, c) = (p− c)q1 − g(q1)

but we now make the change of variables

U(c) = v(q1(c), c)− T1(c).

This allows us to eliminate the transfer rule from the platform’s objective function by rewrit-

ing it as

m

∫ c

c

(v(q1(c), c)− U(c)) dF (c).

10As we shall see shortly, whenever the quantity constraint is binding for a producer of type c, the platform
sells this type a quantity that is higher than the corresponding monopoly quantity in order to foreclose its
upstream competition and ensure that this type does not sell a positive level of output through non-platform
distribution channels. Calzolari and Denicolo (2015) use the term limit pricing to refer to transfer rules that
implement the allocation q1 satisfying g′(q1(c)) = (p− c− t2)+ for all c ∈ [c, c].
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By Lemma 2 the indirect payoff function v exhibits strict increasing differences in (q1,−c).
Combining this single-crossing property with the Envelope Theorem then shows that incen-

tive compatibility is equivalent to requiring that U ′(c) = −q1(c) holds for all c ∈ [c, c] and

q1 is decreasing in c. The platform’s problem thus becomes

max
p≥0

max
q1:[c,c]→R≥0

{
m

∫ c

c

(v(q1(c), c, p)− U(c)) dF (c) + λD(p)

}
s.t. q1(·) decreasing and

dU(c)

dc
= −q1(c) ∀c ∈ [c, c], (IC)

U(c) ≥ max
q2≥0
{(p− c− t2)q2 − g(q2)} ∀c ∈ [c, c], (IR)

q1(c) ≥ qlim
1 (c) ∀c ∈ [c, c], (LP)

D(p) = m

∫ c

c

q1(c) dF (c). (MC)

This is an optimal control program where q1 is the state variable and U is the control

variable. Besides the market-clearing constraint, this control problem is similar to that

studied by Calzolari and Denicolo (2015), who derive the optimal nonlinear pricing strategy

of a dominant firm that faces a competitive fringe. Following our approach from Section 3.1

and letting λ denote the Lagrange multiplier associated with the market-clearing constraint,

the Lagrange dual function is now given by

L(p, λ) := max
q1:[c,c]→R≥0

{
m

∫ c

c

[(p− c− λ)q(c)− g(q(c))− U(c)] dF (c)

}
+ λD(p)

s.t. (IC), (IR) and (LP). (IC)

The single-crossing condition guarantees that the individual rationality constraint is only

binding for a single marginal type c̃.11 Using this fact, the platform’s objective function can

be written

m

∫ c̃

c

[(p− c− λ)q(c)− g(q(c))− U(c)] dF (c) +mt2

∫ c

c̃

qlim(c) dF (c).

Integrating by parts and using U ′(c) = −q1(c) we have∫ c̃

c

U(c)f(c) dc = U(c̃)F (c̃)−
∫ c̃

c

U ′(c)F (c) dc = U(c̃)F (c̃) +

∫ c

c

q1(c)F (c) dc.

11Note that if t2 is sufficiently small then we will have c̃ = c. If t2 is sufficiently large then the limit pricing
constraint will not bind for any type and c̃ will be such that both qM (c̃) = 0 and qlim(c̃) = 0.
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Using this to rewrite the Lagrange dual function we have

max
q1:[c,c]→R≥0

m

{∫ c̃

c

[(p− Γ(c)− λ) q1(c)− g(q1(c))] dF (c)− U(c̃)F (c̃) + t2

∫ c

c̃

qlim(c) dF (c)

}
s.t. q1(·) decreasing and q1(c) ≥ qlim

1 (c) ∀c ∈ [c, c].

Ignoring the final remaining constraints, the solution qM1 to the relaxed version of this opti-

mization problem satisfies the first-order condition

g′
(
qM1 (c)

)
= (p− Γ(c)− λ)+ .

Since g is a strictly convex function we can directly impose the constraint

g′(q1(c)) ≥ (p− c− t2)+

on this solution, which yields

g′ (q∗1(c)) = max
{

(p− Γ(c)− λ)+ , (p− c− t2)+

}
.

Equivalently, we can write this as q∗1(c) = max{qM1 (c), qlim
1 (c)}. If Γ is an increasing in c then

both the functions (p− Γ(c)− λ)+ and (p− c− t2)+ are decreasing in c. Since the minimum

of two decreasing functions is itself a decreasing function, this implies that q∗1 is decreasing

in c. Consequently, q∗1 solves the optimization problem associated with the Lagrange dual

function. The Lagrange dual function can therefore be written

m

(∫ c

c

[(p− Γ(c)− λ) q∗1(c)− g(q∗1(c))] dF (c)− t2F (c̃)qlim(c̃) + t2

∫ c

c̃

qlim(c) dF (c)

)
.

Two cases are now possible. If t2 is sufficiently small and qM(c) ≤ qlim(c) holds for all

c ∈ [c, c]), then we have c̃ = c.12 Otherwise, we have c̃ = sup
c∈[c,c]

{c : qM(c̃) > qlim(c̃)}.13

Our assumption that Γ is increasing in c does not preclude the possibility that the quantity

schedules qM1 (c) and qlim
1 (c) intersect at multiple points. However, if the function F (·)/f(·)

happens to be increasing in c then the quantity schedules qM and qlim cross at most once,

regardless of the value of the Lagrange multiplier.14

12Since Γ(c) ≥ c and Γ(c) = c, if qM (c) ≤ qlim(c), this implies that qM (c) ≤ qlim(c) holds for all c ∈ [c, c].
13Note that we may have qlim(c̃) = 0 in this case. Moreover, since Γ(c) ≥ c and Γ(c) = c, if there exists

some value of c such that qM (c) > qlim(c), then we must have qM (c) > qlim(c).
14This property holds for our leading example in which producer costs are uniformly distributed on the

unit interval. More generally, assuming that F (c)/f(c) is increasing in c is equivalent to assuming that F is a
log-concave function. Although this is stronger than the more common assumption of Myersonian regularity
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The solution to the platform’s problem is now characterized by the saddle point problem

max
p≥0

min
λ∈R

{
m

(∫ c̃

c

[(p− Γ(c)− λ) q∗1(c)− g(q∗1(c))] dF (c)− t2F (c̃)qlim(c̃)

+ t2

∫ c

c̃

qlim(c) dF (c)

)
+ λD(p)

}
,

The optimal value λ∗ is therefore pinned down by the market-clearing constraint

D(p) = m

∫ c

c

q∗1(c) dF (c),

while the optimal downstream market price p∗ is characterized by

p∗ = arg max
p≥0

{
m

(∫ c̃

c

[(p− Γ(c)− λ∗) q∗1(c)− g(q∗1(c))] dF (c)− t2F (c̃)qlim(c̃)

+ t2

∫ c

c̃

qlim(c) dF (c)

)
+ λ∗D(p)

}
.

Summarizing all of this, we have the following proposition.

Proposition 5. Suppose that the distribution F is regular in the sense that Γ(c) = c+ F (c)
f(c)

is increasing in c ∈ [c, c]. Then for all c ∈ [c, c], the optimal upstream allocation rule q∗ and

the optimal price p∗ that the platform induces in the downstream market are characterized

by the equations

q∗1(c) = max
{
qM1 (c), qlim

1 (c)
}
, m

∫ c

c

q∗1(c) dF (c) = D(p∗),

p∗ = arg max
p≥0

{
m

(∫ c̃

c

[(p− Γ(c)− λ∗) q∗1(c)− g(q∗1(c))] dF (c)− t2F (c̃)qlim(c̃)

+ t2

∫ c

c̃

qlim(c) dF (c)

)
+ λ∗D(p)

}
,

where qM1 (c) and qlim
1 (c) are such that g′

(
qM1 (c)

)
= (p− Γ(c)− λ∗)+ and g′

(
qlim

1 (c)
)

=

(p− c− t2)+, respectively, and c̃ is given by c̃ = c if the set {c : qM1 (c) > qlim
1 (c)} is empty

and c̃ = supc∈[c,c]{c : qM1 (c) > qlim
1 (c)}.

If the platform faces a non-trivial problem and the limit pricing constraint is binding for

some type c ∈ [c, c] then the availability of non-platform distribution channels reduces the

(which merely requires that the function Γ is increasing), many standard demand curves satisfy this property
(see, for example, An (1998) and Bagnoli and Bergstrom (2005)).
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platform’s upstream market power and overall profits. If t2 is sufficiently small, we can also

immediately see that the availability of these non-platform distribution channels increases

the total quantity sold in the upstream market and decreases the downstream equilibrium

price.

Proposition 6. The platform’s total upstream profits are increasing in t2. Moreover, the

optimal downstream price p∗ is decreasing in t2. Consequently, downstream consumer surplus

increases in equilibrium as t2 decreases.

4.2 Implications of downstream platform production

Extending our analysis from the previous subsection to allow for downstream production

on the part of the platform now proceeds in precisely the same manner as in Section 3.2.

Specifically, the platform’s problem is now given by

max
p≥0

max
q1:[c,c]→R≥0,
T1:[c,c]→R

{
m

∫ c

c

T1(c) dF (c) + (p− cP )y − g(y)

}
s.t. (p− c)(q1(c) + q∗2(q1(c), c)− q1(ĉ)− q∗2(q1(ĉ), c))− g(q1(c) + q∗2(q1(c), c))

+ g(q1(ĉ) + q∗2(q1(ĉ), c)) ≥ T1(c)− T1(ĉ) + t2(q∗2(q1(c), c)− q∗2(q1(ĉ), c)) ∀c, ĉ ∈ [c, c] (IC)

(p− c)(q1(c) + q∗2(q1(c), c))− g(q1(c) + q∗2(q1(c), c))− T1(c)− t2q∗2(q1(c), c)

≥ max
q2≥0
{(p− c− t2)q2 − g(q2)} ∀c ∈ [c, c], (IR)

g′ (q1(c) + q∗2(q1(c), c)) = (p− c− t2)+ ∀c ∈ [c, c], (FOC)

D(p) = m

∫ c

c

(q1(c) + q∗2(q1(c), c)) dF (c) + y. (MC)

Letting λ denote the Lagrange multiplier associated with the market-clearing constraint, the

optimal level y∗ of downstream platform production satisfies

g′(y∗) = (p− cP − λ∗)+

and the solution to the platform’s problem is therefore characterized by the saddle point

problem

max
p≥0

min
λ∈R

{
m

(∫ c̃

c

[(p− Γ(c)− λ) q∗1(c)− g(q∗1(c))] dF (c)− t2F (c̃)qlim(c̃)

+ t2

∫ c

c̃

qlim(c) dF (c)

)
+ (p− cP − λ)y∗ − g(y∗) + λD(p)

}
.
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Consequently, we have the following proposition.

Proposition 7. Suppose that the distribution F is regular in the sense that Γ(c) = c+ F (c)
f(c)

is increasing in c ∈ [c, c]. Then for all c ∈ [c, c], the optimal upstream allocation rule q∗,

the optimal level of downstream platform production y∗ and the optimal price p∗ that the

platform induces in the downstream market are characterized by the equations

q∗1(c) = max
{
qM1 (c), qlim

1 (c)
}
, g′(y∗) = (p− cP − λ∗)+, m

∫ c

c

q∗1(c) dF (c) + y∗ = D(p∗),

p∗ = arg max
p≥0

{
m

(∫ c̃

c

[(p− Γ(c)− λ∗) q∗1(c)− g(q∗1(c))] dF (c)− t2F (c̃)qlim(c̃)

+ t2

∫ c

c̃

qlim(c) dF (c)

)
+ λ∗D(p)

}
,

where qM1 (c) and qlim
1 (c) are such that g′

(
qM1 (c)

)
= (p− Γ(c)− λ∗)+ and g′

(
qlim

1 (c)
)

=

(p− c− t2)+, respectively, and c̃ is given by c̃ = c if the set {c : qM1 (c) > qlim
1 (c)} is empty

and c̃ = supc∈[c,c]{c : qM1 (c) > qlim
1 (c)}.

Similarly to the case in which the platform monopolizes the upstream market, we have

the following comparative statics.

Proposition 8. Let R(Q) = QP (Q) denote the revenue associated with selling the total

quantity Q in the downstream market and suppose that R is a concave function. The equi-

librium quantity y∗+m
∫ c
c
q∗(c) dF (c) supplied in the downstream market and, consequently,

consumer surplus are decreasing in cP .

4.3 “Killer” acquisitions and exclusive dealing

Since the platform’s profit is increasing in t2, the platform now has an incentive to take mea-

sures that undermine this upstream market competition. Such practices can harm consumers

by decreasing downstream entry and increasing the equilibrium price in the downstream mar-

ket.

For example, the platform may have an incentive to increase the price offered by the

competitive fringe by acquiring and shuttering its upstream market rivals. We can determine

the profitability of a given “killer” acquisition by using the model introduced in this section to

compare the cost of a given acquisition to the increase in the platform’s profits associated with

the corresponding change in the price t2. There is now also scope for the platform to increase

its profits by offering exclusive contracts that prohibit some producers from making use of

non-platform distribution channels whenever they are served by the platform. Such contracts
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benefit the platform by removing the limit pricing constraints from (9), meaning that the

presence of the competitive fringe only imposes the type-dependent individual rationality

constraints on the platform. In particular, the platform’s problem becomes

max
p≥0

max
q1:[c,c]→R≥0,
T1:[c,c]→R

{
m

∫ c

c

T1(c) dF (c)

}
s.t. (p− c)(q1(c)− q1(ĉ)) ≥ g(q1(c))− g(q1(ĉ)) + T1(c)− T1(ĉ) ∀c, ĉ ∈ [c, c], (IC)

(p− c)q1(c)− g(q1(c))− t1(c)q1(c) ≥ max
q2≥0
{(p− c− t2)q2 − g(q2)} ∀c ∈ [c, c], (IR)

D(p) = m

∫ c

c

(q1(c) + q∗2(q1(c), c)) dF (c). (MC)

From our analysis in the previous section, we know that the individual rationality constraint

binds for the marginal type c̃ when the platform cannot offer exclusive contracts. Producers

with a cost exceeding c̃ receive their outside option. For producers with a cost less than c̃,

the individual rationality constraint (which are restraints in utility space) are never binding

but the limit pricing constraints (which are constraints in quantity space) may bind for these

types. Consequently, types with a cost exceeding c̃ are unaffected when the platform engages

in exclusive dealing. However, the platform strictly benefits from exclusive dealing when

there are types less than c̃ for which the limit pricing constraints are binding. In particular,

we can characterize the solution for the case where the platform can engages in exclusive

dealing in a similar manner to Proposition 5. However, for all types with c ∈ [c, c̃], the optimal

allocation rule qe1 is now given by qe1(c) = qM1 (c) (rather than q∗1(c) = max{qM1 (c), qlim
1 (c)},

which applies for these types when the platform does not engage in exclusive dealing).15

4.4 Linear production costs with capacity constraints

Throughout this paper we studied in setting in which producers and the platform have convex

production costs. This allowed us to adopt a tractable, first-order approach. However, if we

set g(q) ≡ 0 then we obtain a linear model in which the payoff functions of producers are

given by

(p− c)(q1 + q2)− t1q1 − t2q2.

In order to analyse this linear model we need to introduce capacity constraints so that

we have a well-defined problem that doesn’t involve producers that only want to produce

15Note that each of these quantity schedules depends on the value of the Lagrange multiplier.
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no output or an infinite level of output. In Appendix B we study such a linear problem,

assuming that each producer has unit capacity. In this linear setting it is also tractable to

consider the case where producers’ outside options are heterogeneous and represent private

information. While the analysis of this linear model is somewhat technical and involved,

as the optimal selling mechanism may now involve rationing (see Theorem B.1). However,

we can still show that our main result continues to hold and that consumers benefit from

downstream production on the part of the platform (see Theorem B.2).

5 Conclusions

In this paper we develop a general mechanism design framework for studying vertical mar-

ket structures involving a dominant firm. While this paper focused on the scope for the

participation of platforms in downstream markets to harm consumers, there are many other

antitrust concerns relating to platforms that have been raised by regulators. This, combined

with the flexibility of our modelling approach, suggests many avenues for further research.

For example, a key concern frequently cited by antitrust authorities is the extent to which

exclusive access to consumer data expands the market power of online platforms. Another

concern among regulations is whether platforms profitably steer consumers towards their

own downstream products by strategically ordering search results. For example, in a related

paper we study how product salience can expand the market power of dominant firms in

downstream markets, which leaves open the question of what the economic implications of

this is in vertical structures.
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Anderson, S. P. and Ö. Bedre-Defolie (2021): “Hybrid Platform Model,” Working

paper.

Armstrong, M. (2006): “Competition in Two-Sided Markets,” RAND Journal of Eco-

nomics, 37, 668–691.

Bagnoli, M. and T. Bergstrom (2005): “Log-Concave Probability and Its Applica-

tions,” Economic Theory, 26, 445–469.

BBC News (2019): “Amazon forced to pull products in India as new rules bite,” [Online;

posted 1-February-2019].

Bonnans, J. F. and A. Shapiro (2000): Perturbation Analysis of Optimization Problems,

New York, NY: Springer.

Bork, R. H. (1978): Antitrust Law: An Economic Perspective, New York, NY: Free Press.

Boyd, S. and L. Vandenberghe (2004): Convex Optimization, Cambridge, UK: Cam-

bridge University Press.
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Choné, P., L. Linnemer, and T. Vergé (2021): “Double Marginalization and Vertical

Integration,” Working Paper.

Cunningham, C., F. Ederer, and S. Ma (2021): “Killer Acquisitions,” Journal of

Political Economy, 129, 649–702.

Doval, L. and V. Skreta (2018): “Constrained Information Design: Toolkit,” Technical

note.

Fuchs, W. and A. Skrzypacz (2015): “Government Interventions in a Dynamic Market

with Adverse Selection,” Journal of Economic Theory, 158, 371–406.

29



Hagiu, A., T.-H. Teh, and J. Wright (2020): “Should Platforms be Allowed to Sell on

Their Own Marketplaces?” Working paper.

Jullien, B. (2000): “Participation Constraints in Adverse Selection Models,” Journal of

Economic Theory, 93, 1–47.

Kang, Z. Y. (2021a): “Mechanism Design in Large Markets,” Working paper.

——— (2021b): “Optimal Redistribution Through Public Provision of Private Goods,”

Working paper.

Khan, L. M. (2017): “Amazon’s Antitrust Paradox,” Yale Law Journal, 126, 710–805.

Kleiner, A., B. Moldovanu, and P. Strack (2020): “Extreme Points and Majoriza-

tion: Economic Applications,” Working paper.

Loertscher, S. and L. Marx (2021a): “Incomplete Information Bargaining with Appli-

cations to Mergers, Investment, and Vertical Integration,” American Economic Review,

forthcoming.

——— (2021b): “Incomplete-Information Models for Industrial Organization,” Working Pa-

per.

Loertscher, S. and E. V. Muir (2021): “Monopoly Pricing, Optimal Rationing, and

Resale,” Journal of Political Economy, forthcoming.

Madsen, E. and N. Vellodi (2021): “Insider Imitation,” Working paper.

Manelli, A. M. and D. R. Vincent (2007): “Multidimensional Mechanism Design:

Revenue Maximization and the Multiple-Good Monopoly,” Journal of Economic Theory,

137, 153–185.

Martimort, D. and L. Stole (2009): “Market Participation in Delegated and Intrinsic

Common-Agency Games,” RAND Journal of Economics, 40, 78–102.

Milgrom, P. and I. Segal (2002): “Envelope Theorems for Arbitrary Choice Sets,”

Econometrica, 70, 583–601.

Milgrom, P. and C. Shannon (1994): “Monotone Comparative Statics,” Econometrica,

62, 157–180.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research,

6, 58–73.

30



Philippon, T. and V. Skreta (2012): “Optimal Interventions in Markets with Adverse

Selection,” American Economic Review, 102, 1–28.

Posner, R. A. (1976): Antitrust Law: An Economic Perspective, Chicago, IL: University

of Chicago Press.

Rey, P. and J. Tirole (2007): “A Primer on Foreclosure,” in Handbook of Industrial

Organization, ed. by M. Armstrong and R. Porter, Elsevier, vol. 3, 2145–2220.

Riordan, M. (2005): “Competitive Effects of Vertical Integration,” Working Paper.

Rochet, J.-C. (1987): “A Necessary and Sufficient Condition for Rationalizability in a

Quasi-Linear Context,” Journal of Mathematical Economics, 16, 191–200.

Rochet, J.-C. and J. Tirole (2003): “Platform Competition in Two-Sided Markets,”

Journal of the European Economic Association, 1, 990–1029.

——— (2006): “Two-Sided Markets: A Progress Report,” RAND Journal of Economics, 37,

645–667.

Subcommittee on antitrust, c. and administrative law of the committee

on the judiciary (2020): “Investigation of competition in digital markets,” Tech. rep.,

The US House Majority Report.

Tirole, J. (2012): “Overcoming Adverse Selection: How Public Intervention Can Restore

Market Functioning,” American Economic Review, 102, 29–59.

Topkis, D. M. (1978): “Minimizing a Submodular Function on a Lattice,” Operations

Research, 26, 305–321.

Warren, E. (2019): “Here’s How We Can Break Up Big Tech,” [Online; posted 8-March-

2019].

Weyl, E. G. (2010): “A Price Theory of Multi-Sided Platforms,” American Economic

Review, 100, 1642–72.

31



Appendix

A Proofs

A.1 Proof of Lemma 1

Proof. First, suppose that the allocation rule q induces a price p in the downstream market.

Given that p is a market-clearing price it cannot induce excess demand or supply and we

must have D(p) =
∫ c
c
q(c) dF (c). Second, suppose p satisfies D(p) =

∫ c
c
q(c) dF (c) and let

p′ denote the price induced in the downstream market. Then by assumption we also have

D(p′) =
∫ c
c
q(c) dF (c) and hence D(p) = D(p′). Since the demand function D is continuous

and strictly decreasing in p we can conclude that p′ = p and p is the price induced in the

downstream market as required.

A.2 Proof of Lemma 2

Proof. We have

∂u

∂c
= −q and

∂2u

∂q∂c
= −1 < 0,

which immediately shows that u exhibits strict increasing differences in (−c, q).

A.3 Proof of Proposition 1

Proof. It is well known that strong duality holds (see, for example, Theorem 2.165 in Bonnans

and Shapiro, 2000). It now only remains to derive the expressions from Proposition 1 for

the special case where g(q) = βq2/2 and producers costs are uniformly distributed on the

interval [0, 1]. This yields Γ(c) = 2c and, for all c ∈ [c, c], we have

qM(c) =

(
pM − 2c− λM

β

)
+

.

Assuming that Γ−1(pM − λM) = pM−λM
2
≤ 1, we have

∫ 1

0

qM(c) d(c) =

∫ pM−λM
2

0

pM − 2c− λM

β
dc = −

[(
pM − 2c− λM

)2

4β

] pM−λM
2

0

=

(
pM − λM

)2

4β
.

32



Substituting this into (3), which is the first-order condition that pins down λM , we have

λM = pM −
√

4βD(pM).

Of course, this solution is only valid if Γ−1(pM − λM) =
√
βD(pM) ≤ 1 or, equivalently, if

βD(pM) ≤ 1. If Γ−1(pM − λM) = pM−λM
2

> 1 then we have

∫ 1

0

qM(c) dc =

∫ 1

0

pM − 2c− λM

β
dc =

(
pM − λM

)2

4β
−
(
pM − 2− λM

)2

4β
=
pM − λM − 1

β
.

Substituting this into (3) then yields

λM = pM − βD(pM)− 1.

This solution is only valid if Γ−1(p − λM(p)) = βD(p)+1
2

≥ 1 or, equivalently, if βD(p) ≥ 1.

Putting all of this together we have

λM =

pM −
√

4βD(pM), βD(pM) ≤ 1

pM − βD(pM)− 1, βD(pM) > 1

as required. We conclude by computing the transfer rule tM . First, suppose that we have

βD(pM) ≤ 1. Then for c ∈
[
c, p

M−λM
2

]
we have per-unit transfers of

tM(c) = (pM − c)− β

2
qM(c)−

∫ pM−cM
2

c
qM(x) dx

qM(c)

= (pM − c)− pM − 2c− λM

2
−
∫ pM−λM

2

c

(
pM − 2c− λM

)
dx

pM − 2c− λM

= (pM − c)− pM − 2c− λM

2
− β

4

(
pM − 2c− λM

β

)
= (pM − c)− 3(pM − 2c− λM)

4

=
pM + 2c+ 3λM

4
.
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Next, suppose that βD(pM) > 1. Then we have per-unit transfers of

tM(c) = (pM − c)− pM − 2c− λM

2
−

∫ 1

c

(
pM−2c−λM

β

)
dx

pM − 2c− λM

= (pM − c)− pM − 2c− λM

2
− β

4

(
pM − 2c− λM

β

)
+

(pM − 2− λM)2

4(pM − 2c− λM)

=
pM + 2c+ 3λM

4
+

(pM − 2− λM)2

4(pM − 2c− λM)
.

A.4 Proof of Proposition 2

Proof. When the platform also produces in the downstream market, its optimization problem

becomes

max
p≥0, y≥0,
q:[c,c]→R≥0

{
m

∫ c

c

[(p− Γ(c)) q(c)− g(q(c))] dF (c) + y(p− cP )− g(y)

}

s.t. D(p) = m

∫ c

c

q(c) dF (c) + y, q(·) decreasing.

Rewriting the market-clearing constraint as p = P
(
y +

∫ c
c
q(c) dF (c)

)
and directly substi-

tuting this constraint into the objective function we obtain

max
y≥0,

q:[c,c]→R≥0

{
m

∫ c

c

[(
P

(
y +m

∫ c

c

q(x) dF (x)

)
− Γ(c)

)
q(c)− g(q(c))

]
dF (c)

+ y

(
P

(
y +m

∫ c

c

q(c) dF (c)

)
− cP

)
− g(y)

}
s.t. q(·) decreasing.

We are interested in investigating how the selling mechanism used in the upstream market

impacts the platform’s profit in the downstream market. However, the platform’s down-

stream profits are only impacted by the upstream market selling mechanism through the

aggregate quantity that it sells in the upstream market. Motivated by this, we utilize the

aggregation principal of Milgrom and Shannon (1994). Specifically, we let Q =
∫ c
c
q(c) dF (c)

denote the aggregate quantity that the platform sells in the upstream market with a unit
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mass of producers and consider the function Ω : R+ × R+ × R+ → R with

Ω(y,Q; cP ) = (y +mQ)P (y +mQ)− cPy − g(y)

− min
q:[c,c]→R≥0

{
m

∫ c

c

[Γ(c)q(c) + g(q(c))] dF (c) :

∫ c

c

q(c) dF (c) = Q, q(·) decreasing

}
.

Observe that the platform’s optimization problem can now be rewritten

max
y≥0, Q≥0

Ω(y,Q; cP ).

Moreover, Ω satisfies

∂2Ω

∂Q∂cP
= 0 and

∂2Ω

∂y∂cP
= −1.

and, consequently, has increasing difference in (y,−Q;−cP ). Next, we verify that Ω is

supermodular in (y,−Q). First, we consider the function

Ω1 : (y,Q) 7→ (y +mQ)P (y +mQ)− cPy − g(y).

Recall that by assumption the revenue function R associated with downstream demand

is concave. This in turn implies that R′′(Q) = 2P ′ + QP ′′(Q) ≤ 0 holds Q ≥ 0 and,

consequently, we have

∂2Ω1

∂y ∂Q
= 2mP ′(y +mQ) +m (y +mQ)P ′′(y +mQ) ≤ 0.

Next, consider the function

Ω2 : (y,Q) 7→ min
q:[c,c]→R≥0

{
m

∫ c

c

[cq(c) + g(q(c))] dF (c) :

∫ c

c

q(c) dF (c) = Q

}
.

Since Ω2 is independent of y, it is trivially supermodular in (y,−Q). Since the sum of

supermodular functions is supermodular, we conclude that Ω is supermodular in (y,−Q).

Applying the monotone selection theorem of Topkis (1978) then yields the desired result.

A.5 Proof of Proposition 3

Proof. For the first part of the proposition statement that concerns a general convex cost

function, the details of the proof proceed in precisely the same manner as in the proof of

Proposition 1. So we focus on the special case where g(q) = βq2/2 and producer costs are
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uniformly distributed on the unit interval [0, 1]. In this case we have

qM(c) =

(
p− Γ(c)− λ

β

)
+

and yM =

(
p− cP − λ

β

)
+

.

From Proposition 2 we know that yM is decreasing in cP and consequently there exists a

cutoff cP > 0 such that yM > 0 for all cP < cP . For now we assume that yM > 0 and

cP < cP . The first-order condition that pins down λM then becomes

m

∫ min{ p−λ
M

2
,1}

0

(
p− 2c− λM

β

)
dF (c) +

p− cP − λM

β
= D(p). (10)

If p− λM ≤ 2 then this becomes

m(p− λM)2

4β
+
p− cP − λM

β
= D(p),

which can be rewritten as

(λM)2 − 2λM
(
p+

2

m

)
+ p2 +

4

m
(p− cP − βD(p)) = 0.

Factoring the left-hand-side of this last equation yields(
λM − p−

2 + 2
√

1 +mcP + βmD(p)

m

)(
λM − p−

2− 2
√

1 +mcP + βmD(p)

m

)
= 0.

Solving this quadratic equation for λM we have

λM = p+
2± 2

√
1 +mcP + βmD(p)

m
.

Since we require p ≥ λM we take the negative root which yields

λM = p+
2− 2

√
1 +mcP + βmD(p)

m
.

This solution is only valid if p−λM ≤ 2 or, equivalently, if cP +βD(p) ≤ 2+m. If p−λM > 2

then (10) becomes

m(p− λM)2

4β
− m(p− 2− λM)2

4β
+
p− cP − λM

β
= D(p).
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which simplifies to

m(p− 1− λM)

β
+
p− cP − λM

β
= D(p).

Solving for λM then yields

λM = p− m+ cP + βD(p)

1 +m
.

This solution is only valid if p−λM > 2 or, equivalently, if cP +βD(p) > 2+m. Summarizing,

we have

λM =

p+
2−2
√

1+mcP+βmD(p)

m
, cP + βD(p) ≤ 2 +m

p− m+cP+βD(p)
1+m

, cP + βD(p) > 2 +m.

To complete the solution, it only remains to characterize the cutoff cP . In particular, this

cutoff satisfies

yM =
pM − cP − λM

β
= 0.

If cP + βD(p) ≤ 2 +m we have

cP =
2
√

1 +mcP + βmD(p)− 2

m
⇒ cP = 2

√
βD(p)

m

and this solution is only valid if

cP + βD(p) = 2

√
βD(p)

m
+ βD(p) ≤ 2 +m ⇒ βD(p) ≤ m.

If cP + βD(p) > 2 +m we have

cP =
m+ cP + βD(p)

1 +m
⇒ cP = 1 +

βD(p)

m

and this solution is only valid if

cP + βD(p) = 1 +
βD(p)

m
+ βD(p) > 2 +m ⇒ = βD(p) > m.
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Putting all of this together we have

cP = pM − λM =

2
√

βD(p)
m

, βD(p) ≤ m

1 + βD(p)
m

, βD(p) > m.

Proof of Proposition 4

Proof. To prove the proposition statement, we return to the variant of the platform’s opti-

mization problem that was introduced in the proof of Proposition 2. In particular, we let

Q =
∫ c
c
q(c) dF (c) denote the aggregate quantity that the platform sells in the upstream

market with a unit mass of producers and consider the function Ω : R+ × R+ × R+ → R
with

Ω(y,Q; cP ) = (y +mQ)P (y +mQ)− cPy − g(y)

− min
q:[c,c]→R≥0

{∫ c

c

[Γ(c)q(c) + g(q(c))] dF (c) :

∫ c

c

q(c) dF (c) = Q, q(·) decreasing

}
.

The platform’s optimization problem can now be rewritten

max
y≥0, Q≥0

Ω(y,Q; cP ).

Letting R denote the revenue function associated with the downstream market, we can

rewrite the objective function Ω as

Ω(y,Q; cP ) = R(y +mQ)−mCU(Q)− CD(y),

where

CU(Q) = min
q:[c,c]→R≥0

{∫ c

c

[Γ(c)q(c) + g(q(c))] dF (c) :

∫ c

c

q(c) dF (c) = Q, q(·) decreasing

}
CD(y) = cPy + g(y).

That is, we can essentially think of the platform acting as a downstream monopoly that has

access two two separate production technologies: it can produce output using the competitive

fringe (which requires that the platform cover the productive costs of these producers, in

addition to paying them an information rent) and it can produce output using its own
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production technology. We now compute the corresponding marginal cost functions. The

marginal cost associated with the platform’s own production is simply given by

MCD(y) :=
dCD(y)

dy
= cP + g′(y).

Computing the marginal cost associated with the output produced by the competitive fringe

requires slightly more work. Letting µ denote the Lagrange multiplier associated with the

quantity constraint we consider the dual problem

CU(Q) = max
m∈R

min
q:[c,c]→R≥0

{∫ c

c

[(Γ(c)− µ) q(c) + g(q(c))] dF (c) + µQ : q(·) decreasing

}
For all c ∈ [c, c], the first-order condition that pins down the optimal allocation rule qM(c)

is then given by

g′(qM(c)) = (µ− Γ(c))+ , (11)

while the optimal value µM of the Lagrange multiplier is characterized by∫ c

c

qM(c) dF (c) = Q.

The marginal cost associated with output produced by the competitive fringe is then

MCU(Q) :=
dCU(Q)

dQ
= µM .

Let’s restrict attention to the case where yM > 0. Then the optimal level yM of the platform’s

own output and the optimal level of aggregate production QM at the competitive fringe must

satisfy

dCU(Q)

dQ

∣∣∣∣
Q=QM

=
dCD(y)

dy

∣∣∣∣
y=yM

⇒ µM = cP + g′(yM).

This in turn implies that

QM =

∫ c

c

qM(c) dF (c),
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where qM(c) satisfies

g′(qM(c)) =
(
cP + g′(yM)− Γ(c)

)
+

for all c ∈ [c, c]. Consequently, we have

dQM

dcP
=

∫ c

c

(
1 + g′′(yM)

dyM

dcP

)
1

g′′(qM(c))
dF (c)

as well as

d
(
mQM + yM

)
dcP

= m

∫ c

c

(
1 + g′′(yM)

dyM

dcP

)
1

g′′(qM(c))
dF (c) +

dyM

dcP
.

We need to show that this last derivative is negative. From Proposition 2 we know that dyM

dcP
≤

0 and dQM

dcP
≥ 0. Moreover, by assumption we have g′′ ≥ 0 by assumption. Consequently, we

must have

1 + g′′(yM)
dyM

dcP
≥ 0. (12)

Next, taking

MRD(y) :=
dR(y +mQ)

dy
= P (y +mQ) + (y +mQ)P ′(y +mQ)

and using MRD(yM) = MCD(yM) shows that we must also have

P (yM +mQM) + (yM +mQM)P ′(yM +mQM) = cP + g′(yM).

Differentiating both side of this last equation with respect to cP we have

(
2P ′(yM +mQM) + (yM +mQM)P ′′(yM +mQM)

) d(mQM + yM)

dcP
= 1 + g′′(yM)

dyM

dcP
,

which implies that

d(mQM + yM)

dcP
=

1 + g′′(yM)dy
M

dcP

2P ′(yM +mQM) + (yM +mQM)P ′′(yM +mQM)
.

Since R′′(Q) = QP ′′(Q) + 2P ′(Q) and R is a strictly concave function we have QP ′′(Q) +

2P ′(Q) < 0 for all Q > 0. Combining this with (12) then yields d(mQM+yM )
dcP

< 0 as required.
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A.6 Proof of Lemma 3

Proof. For this proof it’s more convenient if we denote direct mechanisms by 〈q1, T1〉 where

T1(c) = q1(c)t1(c) specifies the total payment made by a producer of type c to the plat-

form. Given any incentive compatible and individually rational mechanism direct mechanism

〈q1, T1〉, each type c then selects a non-platform quantity q2(c) ≥ 0 and makes a correspond-

ing payment of t2q2(c). However, the platform can always replicate this outcome by simply

offering the menu of contracts corresponding to the direct mechanism 〈q1 + q2, T1 + t2q2〉.
Under this mechanism each producer then optimally sets q∗2(c) = 0. Moreover, this mech-

anism generates weakly more revenue for the platform. Conversely, under any incentive

compatible and individually rational direct mechanism that satisfies the constraint given in

the proposition, we have q∗2(c) = 0 for all c ∈ [c, c].
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B Linear production costs with capacity constraints

B.1 Setup

We consider a setting in which sellers produce a homogeneous good that is traded in a two-

sided market. A platform supplies an intermediate input to sellers in an upstream market.

Sellers then compete with the platform (as well as each other) in a competitive downstream

market.

We begin by describing the buyers and sellers who participate in the downstream market.

Specifically, we assume that there is a unit mass of buyers and a mass m > 0 of sellers.

Buyers have unit demand and are distinguished by their valuations v ∈ [v, v]. The mass

of buyer values is distributed according to the absolutely continuous distribution FB whose

density fB has full support on [v, v]. Sellers have unit capacity and are distinguished by their

marginal costs (c0, c1) ∈ [c0, c0]× [c1, c1], where c0 denotes the marginal cost of producing the

input that can be outsourced to the platform and c1 denotes the residual marginal cost of

production. These costs are distributed according to an absolutely continuous distribution

FS whose density fS has full support on [c0, c0] × [c1, c1]. To ensure that we do not have a

trivial market where either full trade or no trade is optimal absent the platform, we assume

that v ≤ c0+c1 < v ≤ c0+c1. We also introduce the standard mechanism design assumptions

that all agents in the downstream market are risk-neutral, have quasi-linear utility and have

an outside option of 0.

Absent the platform, sellers of type (c0, c1) have a marginal cost of production of c0 + c1

in the downstream market. The total cost of producing x ∈ [0, 1] units in the downstream

market is thus given by x(c0 + c1). Letting p∗ denote the market-clearing price in the

downstream market, it is weakly profitable for a seller to produce in the downstream market

if and only if

p∗ − c0 − c1 ≥ 0

and without loss of generality we can assume that sellers that produce in the downstream

market produce 1 unit of output (their maximum capacity). The competitive market-clearing

price then satisfies

1− FB(p∗) = m · P[c0 + c1 ≤ p∗] = m

∫
1{(c0,c1):c0+c1≤p∗} dFS(c0, c1).

Next, we describe the platform and the upstream market. We assume that sellers can

either purchase an input from the platform in the upstream market or produce the input
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themselves at a marginal cost of c0.16 We also assume that the platform produces the input

in the upstream market at a marginal cost of 0 and can produce in the downstream market

at a marginal cost of c. Once again, we denote the downstream market-clearing price by

p∗. However, this price now depends on the upstream selling mechanism selected by the

platform, as well as the level of output y ≥ 0 produced by the platform in the competitive

downstream market.

The timing of the game is as follows. First, the platform announces a selling mechanism

〈x, t〉 for the upstream market and commits to a level of production y ≥ 0 in the downstream

market. Given y and 〈x, t〉, sellers decide how much of the productive input to purchase

from the seller in the upstream market. The sellers and the platform then participate in the

downstream market.

By the revelation principle it is without loss of generality to consider incentive compatible

direct mechanisms, which we denote by 〈x, t〉. Direct mechanisms consist of an allocation

rule x and a payment rule t. The allocation rule x : [c0, c0] × [c1, c1] → [0, 1] is such that

x(c0, c1) ∈ [0, 1] specifies the total output produced by a seller of type (c0, c1) using the

platform’s input. The payment rule t : [c1, c1] → R+ is such that t(c0, c1) is the payment

made by consumers of type (c0, c1). Given an allocation rule x, a seller of type (c0, c1) can

produce a quantity of x(c0, c1) at a marginal cost of c1 and a quantity of 1 − x(c0, c1) at a

marginal cost of c0 + c1 in the downstream market. Note that we can assume without loss

of generality that sellers either produce 1 unit of output or no output in the downstream

market.17 The indirect utility of a seller of type (c0, c1) is therefore given by

((p∗ − c1)+x(c0, c1) + (p∗ − c1 − c0)+(1− x(c0, c1))− t(c0, c1))+.

Recall that p∗ depends on the allocation rule x, and that firms take p∗ as given. The outside

option of a seller of type (c0, c1) in the upstream market also depends on p∗ as follows

(p∗ − c1 − c0)+ ,

16Equivalently, we could think of c0 as the price of sourcing the input from some other external supplier.
17This follows from our linear specification of seller utility, which ensures that sellers either strictly prefer

to produce 0 units of output, strictly prefer to produce 1 unit of output or are indifference over all levels of
output x ∈ [0, 1].
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and the marginal value of the firm’s input to a seller of type (c0, c1) is therefore

(p∗ − c1)+ − (p∗ − c1 − c0)+ =


c0 if p∗ − c1 > c0,

p∗ − c1 if p∗ − c1 ∈ [0, c0],

0 if p∗ − c1 < 0

= min{(p∗ − c1)+ , c0}.

The demand function D(p) in the competitive downstream market is given by

D(p) = 1− FB(p).

Given any incentive compatible and individually rational direct mechanism 〈x, t〉 and level of

platform production y, the supply function S(y, p, x) in the competitive downstream market

is given by

S(y, p, x) = m

∫
[1− x(c0, c1)]1c0+c1≤p dFS(c0, c1)︸ ︷︷ ︸

output produced using platform’s input

+ m

∫
x(c0, c1)1c1≤p dFS(c0, c1)︸ ︷︷ ︸

output produced without platform’s input

+ y.

The market-clearing price p∗ therefore satisfies D(p∗) = S(y, p∗, x) or, equivalently,

1− FB(p∗)

m
− y =

∫
[1− x(c0, c1)]1c0+c1≤p∗ dFS(c0, c1) +

∫
x(c0, c1)1c1≤p∗ dFS(c0, c1).

(13)

As we will see shortly, this last equation represents a moment constraint on the allocation

function.

B.2 Mechanism design analysis

In this section we characterize the optimal selling mechanism of the platform in the upstream

market. Our solution derives the allocation function as the extreme point of an infinite-

dimensional convex set of all possible allocation functions, which shares common ground

with technical results by Manelli and Vincent (2007), Doval and Skreta (2018), Kleiner et al.

(2020) and Kang (2021a).

The objective of the platform is to maximize its total profit across both the upstream and

downstream markets. We can think of the platform’s optimization problem as consisting of

two steps. First, take the platform’s level of output y and the price p∗ in the downstream

market as given. The platform then selects the direct mechanism 〈x, t〉 that maximizes

its total profit subject to the incentive compatibility and individuals rationality constraints
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of the sellers, as well as the constraint that a market clearing price of p∗ is induced in

the competitive downstream market. This yields a profit function of π(y, p∗). Second, the

platform determines the optimal level of production y and the optimal market-clearing price

p∗ to be induced in the downstream market.

Before proceeding with the analysis, we first require a characterization of the price p∗

that is induced in the downstream market. To that end, we have the following useful lemma.

Lemma B.1. An incentive compatible and individually rational upstream selling mechanism

〈x, t〉 and output choice y induces a price p∗ in the competitive downstream market if and

only if the market clearing condition D(p∗) = S(y, p∗, x) is satisfied.

Given a level of output y, the maximum price p∗(y) that can be induced in the downstream

market satisfies

1− FB(p∗(y)) = m

∫
1c0+c1≤p∗(y) dFS(c0, c1) + y,

which corresponds to the case where the platform does not sell any output in the upstream

market. The minimum price p∗(y) that can be induced in the downstream market satisfies

1− FB(p∗(y)) = m

∫
1c1≤p∗(y) dFS(c0, c1) + y,

which corresponds to the case where all sellers outsource all production of the input to

the platform in the upstream market. In light of Lemma B.1, the platform’s optimization

problem is then given by

max
y,p∗,〈x,t〉

[∫
t(c0, c1) dFS(c0, c1) + (p∗ − c)y

]
s.t. D(p∗) = S(y, p∗, x).

Here, we maximize over y ∈ [0, 1], p∗ ∈ [p∗(y), p∗(y)] and all incentive compatible and

individually rational mechanisms 〈x, t〉 that satisfy the market clearing constraint D(p∗) =

S(y, p∗, x) in the competitive downstream market. This can be rewritten as the nested

optimization problem

max
p∗,y

{
max
〈x,t〉

{∫
t(c0, c1) dFS(c0, c1) : D(p∗) = S(y, p∗, x)

}
+ (p∗ − c)y

}
.

We now turn our attention to the inner problem. Solving this problem yields a function
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Π : [0, 1]× [0, 1]→ R+ given by

Π(y, p∗) = max
〈x,t〉

∫
t(c0, c1) dFS(c0, c1)

s.t. D(p∗) = S(y, p∗, x)

We solve this problem by showing that it can be completely rewritten in terms of the effective

types introduced in Section B.2.

Fix the output of the platform y and the price p∗ to be induced in the competitive

downstream market. Given a direct mechanism 〈x, t〉, the indirect utility of sellers of type

(c0, c1) ∈ [c0, c0]× [c1, c1] who report to be of type (ĉ0, ĉ1) ∈ [c0, c0]× [c1, c1] is given by

(p∗ − c1)+x(ĉ0, ĉ1) + (p∗ − c1 − c0)+(1− x(ĉ0, ĉ1))− t(ĉ0, ĉ1)

= min{(p∗ − c1)+, c0}x(ĉ0, ĉ1) + (p∗ − c1 − c0)+ − t(ĉ0, ĉ1).

Incentive compatibility then requires that, for all (c0, c1), (ĉ0, ĉ1) ∈ [c0, c0]× [c1, c1],

min{(p∗ − c1)+, c0}x(c0, c1)− t(c0, c1) ≥ min{(p∗ − c1)+, c0}x(ĉ0, ĉ1)− t(ĉ0, ĉ1),

while individual rationality requires that, for all (c0, c1) ∈ [c0, c0]× [c1, c1],

min{(p∗ − c1)+, c0}x(c0, c1)− t(c0, c1) ≥ (p∗ − c1 − c0)+.

These constraints are of the same functional form as those found in standard mechanism

design settings. However, the type (c0, c1) of each seller is replaced with their marginal

value for the firm’s input in the upstream market. Moreover, we also have a type-dependent

outside option.

We now modify our mechanism design problem as follows. First, we consider a continuous

function η that maps the type (c0, c1) of each seller to an effective type η(c0, c1) = min{(p∗−
c1)+, c0} ∈ [η, η], where η = min{(p∗ − c1)+, c0} denotes the lowest possible effective type

and η = min{(p∗ − c1)+, c0} denotes the highest possible effective type. We then introduce

an effective allocation rule x̃ : [η, η]→ [0, 1] and an effective transfer rule t̃ : [η, η]→ R such

that, for all (c0, c1),

x(c0, c1) = x̃(η(c0, c1)) and t(c0, c1) = t̃(η(c0, c1)).
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An immediate implication of incentive compatibility is that, for all (c0, c1) and (ĉ0, ĉ1),

(η(c0, c1)− η(ĉ0, ĉ1))(x(c0, c1)− x(ĉ0, ĉ1)) ≥ 0.

Hence, incentive compatibility dictates that if min{(p∗− c1)+, c0} ≥ min{(p∗− ĉ1)+, ĉ0} then

x(c0, c1) ≥ x(ĉ0, ĉ1). Or, equivalently, that x̃ is increasing on its domain.

We now argue that it is without loss of generality to limit attention to allocation rules

such that, for all (c0, c1) ∈ [c0, c0] × [c1, c1], x(c0, c1) = x̃(η(c0, c1)), where x̃ is increasing

on its domain. Of course, the platform is not restricted to offer the same allocation to all

sellers with the same effective types. However, incentive compatibility dictates that, for all

(c0, c1), (ĉ0, ĉ1) ∈ [c0, c0]× [c1, c1] with η(c0, c1) = η(ĉ0, ĉ1), we have

η(c0, c1)x(c0, c1)− t(c0, c1) = η(ĉ0, ĉ1)x(ĉ0, ĉ1)− t(ĉ0, ĉ1).

That is, sellers of type (c0, c1) must be indifferent between reporting truthfully and reporting

any other type (ĉ0, ĉ1) such that η(c0, c1) = η(ĉ0, ĉ1). Let GS denote the distribution of

effective types and gS denote the corresponding density function. We also let FS(c0, c1|η)

denote the conditional distribution of types given the effective type η, with corresponding

density function

fS(c0, c1|η) =
fS(c0, c1)

g(η)
.

Given an incentive compatible allocation rule x and an effective type η ∈ [η, η], if we modify

this allocation rule by offering all types (c0, c1) such that η(c0, c1) = η the average allocation

and payment,∫
{(c0,c1):η(c0,c1)=η}

x(c0, c1) dFS(c0, c1|η) and

∫
{(c0,c1):η(c0,c1)=η}

t(c0, c1) dFS(c0, c1|η),

respectively, this has no impact on the expected payoff of the platform or the incentive

compatibility constraints of sellers. Therefore, if we solve for the optimal effective allocation

rule x̃, subject to the constraint that x̃ is increasing in η, it is without loss of generality for

the platform to set x(c0, c1) = x̃(η(c0, c1)) for all (c0, c1) ∈ [c0, c0]× [c1, c1].

Next, we show that Myerson’s lemma holds in this setting and that the effective payment

rule t̃ is pinned down, up to a constant, by the effective allocation rule x̃. Since consumers
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of effective type η ∈ [η, η] solve

max
η̂∈[η,η]

{ηx̃(η̂)− t̃(η̂)},

applying the envelope theorem yields

ηx̃(η)− t̃(η) = ηx̃(η)− t̃(η) +

∫ η

η

x̃(η) dη̂.

Under the optimal mechanism, the individual rationality constraint must bind for consumers

with effective type η = η. Imposing this and rearranging yields

t̃(η) = ηx̃(η)−
∫ η

η

x̃(η̂) dη.

Summarizing, all of this we have the following proposition.

Proposition B.1. Conditional on p∗ and y, it is without loss of generality for the platform

to restrict attention to direct mechanisms 〈x, t〉 such that

(i) x(c0, c1) = x̃(min{(p∗ − c1)+, c0}) for some increasing function x̃; and

(ii) t(c0, c1) = t̃(min{(p∗ − c1)+, c0}) for some function t̃ that satisfies

t̃(η) = ηx̃(η)−
∫ η

η

x̃(η̂) dη̂.

Combining Proposition B.1 with standard Myersonian mechanism design arguments, the

profit of the platform in the upstream market can be written

π(x̃, p∗) =

∫ η

η

Φ(η)x̃(η) dG(η),

where Φ is the effective virtual valuation function given by

Φ(η) = η − 1−G(η)

g(η)
.

It only remains to rewrite the constraint in terms of effective types. To that end, we start

by noting that the market-clearing condition given in (13) can be rewritten

1− FB(p∗)− y
m

− P [c0 + c1 ≤ p∗] =

∫
x(c0, c1)1c0≤p∗≤c0+c1 dFS(c0, c1).
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Rewriting the right-hand-side in terms of effective types then yields

Q(p∗, y) =

∫
x̃(η)φ(η)dG(η),

where

Q(p∗, y) :=
1− FB(p∗)− y

m
− P [c0 + c1 ≤ p∗] and φ(η) := P [c0 ≤ p∗ ≤ c0 + c1| η].

The platform’s inner problem can thus be summarized by

max
x̃:[η,η]→[0,1],

x̃ increasing

∫
Φ(η)x̃(η) dG(η)

s.t.

∫
x̃(η)φ(η) dG(η) = Q(p∗, y)

and the platform’s full optimization problem is given by

max
y∈[0,1],

p∗∈[p∗(y),p∗(y)]

 max
x̃:[η,η]→[0,1],

x̃ increasing

{∫ η

η

Φ(η)x̃(η) dG(η) :

∫
x̃(η)φ(η) dG(η) = Q(p∗, y)

}
+ (p∗ − c)y

 .

In short, the platform faces a mechanism design problem where the outside options for

sellers (which depend on the equilibrium price in the downstream market) are endogenous

to the platform’s chosen output and selling mechanism (which pins down the downstream

supply curve and the equilibrium price in the downstream market). We solve this fixed-

point problem by rewriting the platform’s problem as a nested optimization problem. The

platform’s inner problem involves a constraint that is linear in the effective allocation rule

x̃ and is therefore analogous to a monopoly pricing problem involving a capacity constraint.

Consequently, the optimal selling mechanism can be represented as a convex combination of

at most two posted-price selling mechanisms. Formally, we have the following theorem.

Theorem B.1. Suppose that the function φ has full support on the interval [η, η]. Then

there exists an optimal choice of output y∗ and an optimal selling mechanism 〈x∗, t∗〉 such

that |Im(x∗)| ≤ 3, where Im(x∗) ⊂ {0, q, 1} for some q ∈ (0, 1). This entails an upstream

selling mechanism involving at most two prices p1 and p2 with p1 > p2.

Moreover, we also have the following proposition.

Proposition B.2. Suppose that the platform faces a mechanism design problem that is
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regular in the sense that the following function is increasing:

ψ(η) =
1

φ(η)

[
η − 1−G(η)

g(η)

]
=

1

φ(η)
Φ(η).

Then an optimal selling mechanism in the upstream market consists of the the platform

posting a single price p∗1 and serving any seller who wishes to buy at this price.

Again, the proof of this result follows directly from the analogous monopoly pricing

problem, where ψ is analogous to a monopoly’s marginal revenue curve. If we also introduce

the integral Ψ of the marginal revenue function ψ, then the function Φ is analogous to the

revenue curve of a monopoly. The platform then strictly benefits from price discrimination

in the upstream market if and only if Ψ is not concave at the “quantity” Q(p∗, y∗) and a

market clearing price in the upstream market if and only if Ψ is concave at the “quantity”

Q(p∗, y∗).

Our final result of this section highlights the important role of the constraint that y ≥ 0.

First, notice that if we rewrite our nested optimization problem so that the downstream level

of output y is chosen in the inner nest. Consequently, for a given value of p∗, the platform

can always satisfy the market clearing constraint simply by choosing an appropriate value of

y, provided the constraint that y ≥ 0 doesn’t bind. Absent a binding constraint, the optimal

upstream selling mechanism necessarily involves a menu of at most one price. In sum, we

have the following proposition.

Proposition B.3. The platform uses a pricing schedule involving a menu of two prices only

if the y ≥ 0 constraint is binding.

B.3 Consumer surplus analysis

Motivated by the consumer surplus standard in antitrust practice, in this section we consider

the consumer surplus implications of our analysis from the previous section. For now, we

focus on the regular case, where the platform posts a market clearing price in the upstream

market.

B.3.1 No platform

We begin our analysis by first solving the model for the simple benchmark case involving no

platform. To that end, given the total marginal cost c0 + c1 ∈ [c0 + c1, c0, c1] for a seller of

type (c0, c1), we let FS(c) denote the corresponding absolutely continuous distribution of total

seller costs c = c0 + c1. We also let fS(c) denote the corresponding density function, which
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has full support on [c0 + c1, c0, c1]. The equilibrium price p∗ in the competitive downstream

market is then pinned down by

1− FB(p∗) = mFS(p∗) (14)

and the quantity produced in the competitive downstream market is given by q∗ = 1 −
FB(p∗) = FS(p∗). Our assumptions from Section 2 ensure that q∗ ∈ [0,m] and p∗ ∈ [c0 +

c1, c0+c1]. Letting PD(q) = F−1
B (1−q) denote the inverse demand function, the corresponding

level of consumer surplus is thus

CS =

∫ q∗

0

PD(q)dq − q∗p∗. (15)

We then have the following simple proposition.

Proposition B.4. Absent the platform, the market-clearing price p∗ is decreasing in m and

consumer surplus CS is increasing in m.

That consumer surplus is increasing in the mass of sellers is unsurprising and very intu-

itive. An illustration of the comparative statics from Proposition B.4 can be found in Figure

2.
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(a) Market-clearing price
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Figure 2: An illustration of p∗ and CS when consumer values v are uniformly distributed on
[0, 1] and the marginal costs c0 and c1 of sellers are uniformly distributed on [0, 1]2.

B.3.2 Platform that does not produce downstream

The next simple benchmark case we consider is one in which the platform operates an

upstream market but does not produce downstream. Since we are focusing on the regular

case, without loss of generality we can assume that the platform posts a market clearing
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price η in the upstream market. To analyze consumer welfare, we need to characterize the

optimal upstream market price η∗.

Given an arbitrary upstream market price η, we start by determining the set of sellers

that purchase from the platform and characterize the downstream market p∗. In particular,

given an upstream market price of η and a downstream market price of p∗, the payoff of

sellers that use the platform to trade is p∗ − η − c1 and the payoff of sellers that don’t use

the platform to trade is p∗ − c0 − c1. Now, consider sellers with c0 ≥ η. These sellers will

trade via the platform if c1 < p∗ − η and will not trade otherwise. Next, consider sellers

with c0 < η. These sellers will trade without the platform if c1 + c0 < p∗ and will not trade

otherwise. So for a given value of η, the market clearing price p∗ satisfies

1− FB(p∗) = m

∫ c0

η

∫ p∗−η

c1

dFS(c0, c1) +m

∫ η

c0

∫ p∗−c0

c1

dFS(c0, c1)

and the profit of the seller is given by

π(η) = ηm

∫ c0

η

∫ p∗−η

c1

dFS(c0, c1).

The optimal price η∗ posted by the platform in the upstream market then satisfies

η∗ = arg max
η∈[η,η]

π(η)

and consumer surplus in this case is still given by (15). We then have the following compar-

ative statics.

Proposition B.5. The equilibrium profit π of the platform is increasing in m. Moreover,

relative to the case without a platform, p∗ is lower and consumer surplus is higher for every

value of m.

The comparative statics from Proposition B.5 are illustrated in Figures 3 and 4. This

proposition shows that consumers unambiguously benefit from the existence of the upstream

platform, as this can only improve competition among sellers in the downstream market,

resulting in lower equilibrium prices in the downstream market. In contrast, the impact of

the platform on the profit of sellers is heterogeneous: some sellers are harmed while others

benefit.
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(a) Prices
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Figure 3: An illustration of η∗ (the platform price) and p∗ (the price in the competitive
downstream market) and the profit π of the platform when consumer values v are uniformly
distributed on the interval [0, 1] and the marginal costs c0 and c1 of sellers are uniformly
distributed on the interval [0, 1]2.

(a) Market-clearing price (b) Consumer surplus

Figure 4: An illustration of the market-clearing price and consumer surplus with and without
the platform when consumer values v are uniformly distributed on the interval [0, 1] and the
marginal costs c0 and c1 of sellers are uniformly distributed on the interval [0, 1]2.

B.3.3 Platform that produces downstream

We now analyze consumer surplus in the full model analyzed in Section 3, where the platform

can also produce in the downstream market at a marginal cost of c. Once again, consumer

surplus is given by (15) and to investigate the comparative statics of consumer surplus it

suffices to study comparative statics of the equilibrium downstream market price p∗. To study

the impact of downstream production on consumer surplus, we determine how consumer

surplus varies with the downstream efficiency of the platform. Specifically, we use monotone

comparative statics techniques to derive a sufficient condition under which consumer surplus
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monotonically decreases in the marginal cost c of the platform.

Given that we are restricting attention to the regular case, where posting a market

clearing price in the upstream market is optimal, the platform’s profit is

max
η,y≥0

{mηP[min{(p− c1)+, c0} ≥ η] + y(p− c)}

s.t. D(p) = mS1(p) +mS2(p, η) + y,

where we define S1(p) := P[c0 + c1 ≤ p] and S2(p, η) := P[c0 > p − c1 ≥ η]. One difficulty

with performing comparative statics here is that p is a non-linear function of η and y. We

circumvent this by exploiting the linearity in y in both the platform’s objective function as

well as the constraint,

max
η,p≥0

{mηP[min{(p− c1)+, c0} ≥ η] + [D(p)−mS1(p)−mS2(p, η)] (p− c)}

s.t. D(p)−mS1(p)−mS2(p, η) ≥ 0.

Next, we define the platform’s objective function

Ω(p, η; c) := mηP[min{(p− c1)+, c0} ≥ η] + [D(p)−mS1(p)−mS2(p, η)] (p− c).

Observe that
∂2Ω

∂η ∂c
= m

∂S2

∂η
≤ 0,

where the inequality follows from the observations that

S2(p, η) = E [P[p− c0 < c1 ≤ p− η | c0]] and
∂

∂η
P[p− c0 < c1 ≤ p− η] ≤ 0.

Intuitively, the more efficient the platform is at downstream production, the more intense

the downstream competition is between the platform and sellers. Next, we want to show

that the objective function of the platform exhibits increasing differences in (p, η) so that

we can apply the Monotone Selection Theorem. That is, we want to show that the partial

derivative ∂2Ω
∂p ∂η

is of positive sign. However, directly signing this derivative requires that we

are able to compare the magnitudes of p and η, which we cannot do in general.

To address this issue We now make the change variables η 7→ p− δ. Here δ > 0 since it

cannot be optimal for the platform to set an upstream market price that is higher than the

downstream market price. Defining

Ŝ2(p, δ) := P[δ ≥ c1 > p− c0],
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by the law of iterated expectations we have

Ŝ2(p, δ) = E [P[p− c0 < c1 ≤ δ | c0]] .

Notably, for any c0,

∂

∂p
P[p− c0 < c1 ≤ δ | c0] ≤ 0 and

∂

∂δ
P[p− c0 < c1 ≤ δ | c0] ≥ 0.

That is, ∂Ŝ2/∂p ≤ 0 and ∂Ŝ2/∂δ ≥ 0. Writing the designer’s objective function as

Ω̂(p, δ) ≡ m(p− δ)P[min{(p− c1)+, c0} ≥ p− δ] +
[
D(p)−mS1(p)−mŜ2(p, δ)

]
(p− c),

we then see that
∂2Ω̂

∂δ ∂c
=
∂Ŝ2

∂δ
≥ 0

as required. Applying the Monotone Selection Theorem, we then have the following result

and exploiting the fact that the platform optimally posts a market-clearing price in the

upstream market provided if constraint y ≥ 0 binds, we then have the following result.

Theorem B.2. Suppose that the platform’s objective function exhibits increasing differences

in (p, c) and (δ, c). Then the equilibrium downstream market price p∗ is increasing in c and

consumer surplus is decreasing in c.

The conditions of Theorem B.2 are satisfied by the examples used to construct Figure 5,

where we see that the equilibrium price p∗ (and hence consumer surplus) is decreasing in the

platform’s marginal cost c. This figure also displays the equilibrium upstream market price

η∗, while Figure 6 illustrates the equilibrium output y∗ and profit π of the platform. Here, we

see that a highly efficient platform does not sell any output in the upstream market in order

to reap higher profits in the downstream market. We also see that in this case the platform

competes more aggressively downstream as the mass of sellers m increases. In contrast, an

inefficient platform derives relatively more of its profit from the upstream market. When the

mass of sellers increases in this case, the platform competes less aggressively downstream in

order to partially offset the corresponding decrease in the downstream market price p∗ and

the upstream market price η∗. While this numerical example illustrates that this model gives

rise to a rich set of behaviour and there are a number of counterveiling effects that influence

consumer surplus.
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(a) Upstream price (b) Downstream price

(c) Upstream price (d) Downstream price

Figure 5: An illustration of the upstream and downstream prices when consumer values v
are uniformly distributed on the interval [0, 1] and the marginal costs c0 and c1 of sellers are
uniformly distributed on the interval [0, 1]2.
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(a) Platform output (b) Platform profit

(c) Platform output (d) Platform profit

Figure 6: An illustration of platform output and profit when consumer values v are uniformly
distributed on the interval [0, 1] and the marginal costs c0 and c1 of sellers are uniformly
distributed on the interval [0, 1]2.
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(a) Market-clearing price (b) Consumer surplus

(c) Market-clearing price (d) Consumer surplus

Figure 7: A comparison of downstream prices and consumer surplus when consumer values
v are uniformly distributed on the interval [0, 1] and the marginal costs c0 and c1 of sellers
are uniformly distributed on the interval [0, 1]2.
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