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Abstract

This paper studies fixed-price mechanisms in bilateral trade with ex ante symmetric agents.

We show that the optimal price is particularly simple: it is exactly equal to the mean of

the agents’ distribution. The optimal price guarantees a worst-case performance of at least

1/2 of the first-best gains from trade, regardless of the agents’ distribution. We also show

that the worst-case performance improves as the number of agents increases, and is robust

to various extensions. Our results offer an explanation for the widespread use of fixed-price

mechanisms for size discovery, such as in workup mechanisms and dark pools.
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1 Introduction

In this paper, we study the performance of fixed-price mechanisms in the canonical context of

bilateral trade à la Myerson and Satterthwaite (1983), in which a seller and a buyer bargain over a

single indivisible good. Agents are ex ante symmetric and have independent private values for the

good. In their seminal work, Myerson and Satterthwaite (1983) show that the first-best outcome

cannot generally be achieved. They characterize the second-best Bayesian mechanism, which
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is often strategically complicated for agents. By contrast, fixed-price mechanisms are strategy-

proof. Yet other questions arise: How close to the efficient outcome can fixed-price mechanisms

achieve? What information about the agents is required to set the optimal price? As espoused by

the Wilson (1987) doctrine, designing mechanisms that perform well in reality entails a tradeoff

between efficiency, strategic simplicity and informational simplicity.

This paper derives two key features of fixed-price mechanisms that are important from the

perspective of a market designer. First, the optimal fixed-price mechanism is particularly simple:

it is exactly equal to the mean of the agents’ distribution of values. Second, the optimal price

guarantees a worst-case performance of at least 1/2 of the first-best gains from trade, regardless

of the agents’ distribution. These results are robust to a number of extensions and variations of

the bilateral trade model.

As an example, suppose that seller and buyer have values drawn i.i.d. from the uniform

distribution on [0, 1]. The first-best gains from trade are 1/6, since it is the expected difference

between two i.i.d. draws, whenever the buyer is higher. By contrast, with a price of 1/2, trade

occurs precisely when the seller’s value is below 1/2 and the buyer’s value is above 1/2. Thus the

gains from trade realized in expectation are 0.25 × (3/4− 1/4) = 1/8, which constitutes 3/4

(= 75%) of the first-best gains from trade.

For the sake of comparison, the second-best Bayesian mechanism dictates trade whenever the

buyer’s value exceeds the seller’s value by at least 1/4. Such a mechanism is no longer strategically

simple. Unlike fixed-price mechanisms, it is no longer a dominant strategy for agents to report

their values truthfully; moreover, each agent is required to have the correct beliefs (and higher-

order beliefs) about the other agent. The design of the second-best Bayesian mechanism also

uses more distributional knowledge than the mean. The mechanism realizes in expectation gains

from trade of 9/64. Thus, despite the additional strategic and informational complexity of the

second-best Bayesian mechanism, it achieves a welfare improvement of only 3/32 (= 9.375%) of

the first-best gains from trade, over setting a price of 1/2.

Our results show that this example is not mere coincidence. Fixed-price mechanisms continue

to perform well even when agents’ values are not uniformly distributed. We also show that the

worst-case performance of fixed-price mechanisms improves as the market size grows. Moreover,

the optimal price converges to the competitive price, which is equal to the median of the agents’

distribution given the assumption that agents are ex ante symmetric.

Our focus on fixed-price mechanisms is motivated by the increasing use of such mechanisms in

financial markets, namely size discovery mechanisms such as workup mechanisms and dark pools.

Size discovery mechanisms derive prices from the lit exchange order flow, but differ in the way

2



they do so. Fleming and Nguyen (2018) find that workup trades accounts for about 60% of trading

volume of on-the-run notes in the U.S. Treasury market, while Duffie and Zhu (2017) report that

dark pools account for about 15% of trading volume in the U.S. equity markets.1 Given the size

of these markets, designing fixed-price mechanisms that perform well is clearly important.

Our paper makes three different contributions. First, our results offer the explanation that

the simplicity of designing the optimal price and robust worst-case efficiency guarantee could

underlie the widespread use of fixed-price mechanisms in practice. Second, we give normative

advice and intuition for how the optimal price changes with market size: roughly, the mean price

is approximately optimal in thin markets, whereas the median (competitive) price is approximately

in thick markets.

Finally, we extend the tools that can be used to analyze problems in robust mechanism design.

Our methods are fairly general and can accommodate various extensions to the model. These

include assuming more knowledge about the dispersion in agents’ values, estimating the maximum

welfare loss under a fixed-price mechanism, allowing for other mechanisms in addition to fixed-price

mechanisms, and allowing agents to be asymmetric.

Our work is closest to the literature on robust mechanism design, beginning with the work of

Bergemann and Morris (2005) and Chung and Ely (2007). Optimal mechanisms and worst-case

performances have been characterized in different settings, such as moral hazard by Chassang

(2013) and Carroll (2015), and price discrimination by Bergemann and Schlag (2011),

Bergemann et al. (2015) and Carroll and Segal (2018). A recent strand of this literature has

studied robustness in situations where agents’ distributions are not known, including work by

Wolitzky (2016), Suzdaltsev (2018) and Carrasco et al. (2018). More broadly, similar problems

have been studied in the computer science literature, such as by Blumrosen and Dobzinski

(2014), Blumrosen and Dobzinski (2016), Blumrosen and Mizrahi (2016), Colini-Baldeschi et al.

(2016) and Brustle et al. (2017). We give a more detailed discussion about how our paper is

related to these papers in Section 6.

Our focus on fixed-price mechanisms also connects this paper with the broader literatures on

mechanism design, implementation and strategy-proofness. Since the seminal paper of Myerson

and Satterthwaite (1983), Hagerty and Rogerson (1987) have shown that dominant-strategy

mechanisms for bilateral trade that are budget-balanced ex post must essentially be fixed-price

mechanisms. Drexl and Kleiner (2015) and Shao and Zhou (2016) show that, for certain classes

of distributions, fixed-price mechanisms, together with “option mechanisms,” are optimal even

1 As Fleming and Nguyen (2018) note, the daily trading volume in the U.S. Treasury market exceeds $100 billion,
while that of the U.S. equity markets is about $200 billion.
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when the ex post budget-balanced condition is relaxed to a no-deficit condition. Our methods

can be extended to show that these option mechanisms also perform well, which we consider in

Section 5.

The rest of this paper is organized as follows. In Section 2, we describe our model. Section 3

presents our main results. In Section 4, we analyze a natural variation of our model in large

markets, and show that the worst-case performance of the optimal price improves as the market

size grows. Section 5 shows how our results persist under various extensions; Section 6 concludes

with a discussion on how our results can be interpreted to inform market design.

2 Model

There are two components to our model: (i) a bilateral trade game between a seller and a buyer;

and (ii) a mechanism design problem of choosing a fixed price for the bilateral trade game.

2.1 Bilateral trade

We adopt the canonical bilateral trade setting of Myerson and Satterthwaite (1983). A seller

owns a single indivisible good which a buyer wants to buy. The seller and the buyer are privately

informed of their respective values, S and B, for the good; S and B are independent, nonnegative

random variables with cumulative distribution function F . For ease of exposition, we assume that

F is supported on [0, 1]. We denote by ∆([0, 1]) the set of all such distributions; in particular,

we allow F to be a discrete probability distribution. Our results extend straightforwardly to all

distributions with finite and nonzero mean.

Both agents are risk-neutral and have payoffs that are quasilinear in money. If trade occurs

at a price of p, the seller receives a payoff of p while the buyer receives B − p. If no trade occurs,

the seller receives S while the buyer receives zero.

Our assumption that seller and buyer have ex ante symmetric values differs from the setting of

Myerson and Satterthwaite (1983) in which agents have different distributions. This assumption

is motivated by our application to size discovery mechanisms in financial markets such as dark

pools, where the same market participants may either buy or sell depending on their inventories.

In this setting, we interpret the seller and buyer as liquidity traders, whose inventory positions

are independent of their values of the traded asset.2 The assumption that agents are ex ante

2 As Zhu (2014) notes: “exchanges are more attractive to informed traders, and dark pools are more attractive to
uninformed traders,” due to the fact that execution is not guaranteed in dark pools.
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symmetric is widely used in the literature on size discovery mechanisms, including by Degryse

et al. (2009), Zhu (2014) and Duffie and Zhu (2017).

2.2 Mechanism design

Given the bilateral trade game between the seller and the buyer, we consider the problem faced by

a benevolent mechanism designer (“Designer”). The Designer chooses a fixed price p ∈ R+, which

is allowed to depend on the distribution F . We write p instead of p(F ) when confusion is unlikely

to result, with the understanding that p is a function of F . Under the fixed-price mechanism p,

trade occurs if and only if B > p ≥ S.3

The Designer maximizes the expected gains from trade, Γ(p;F ), in the bilateral trade game,

which can be expressed as

Γ(p;F ) := E[(B − S) · 1B>p≥S].

3 Optimal Fixed-Price Mechanism

3.1 Main results

Our first result characterizes the optimal fixed-price mechanism:

Proposition 1. The optimal price p∗ is the mean of the distribution F :

p∗ = E[S] = E[B].

Proof. For any price p > 0, the expected gains from trade realized by the fixed-price mechanism

p are

Γ(p;F ) = (E[S]− p) · F (p) +

∫ p

0

F (x) dx.

Letting p∗ := E[S],

Γ(p∗;F )− Γ(p;F ) =

∫ p∗

p

[F (x)− F (p)] dx.

This expression is nonnegative because F is nondecreasing; hence p∗ is optimal.

3 Our results on performance do not depend on how ties are resolved here. We adopt this formulation because
it simplifies notation: F (p) = P[S ≤ p] = 1 − P[B > p], so we do not have to worry about limits as either S
or B approach p. Changing how ties are resolved will change our characterization of the optimal fixed-price
mechanism; but this becomes irrelevant under weak regularity assumptions on F , such as if F is atomless.
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Even though the Designer’s chosen fixed-price mechanism may depend arbitrarily on F ,

Proposition 1 shows that the mean is a sufficient statistic for determining the optimal price.

Interestingly, dark pools often peg prices to the midpoint of the exchange bid and offer, which

can be viewed as an estimator of the mean of the agents’ values.4

Given the simplicity of both the statement and proof of Proposition 1, we view it as rather

surprising that it has not appeared at this level of generality much earlier in the literature, at least

to our knowledge. Shao and Zhou’s (2016) Theorem 1 documents the optimality of the mean price

in a closely related setting; however, their setting assumes that the agents’ distribution satisfies

various other regularity conditions,5 and the derivation of their result involves taking a first-order

condition. By contrast, we emphasize that Proposition 1 does not depend on regularity properties

of F , and so holds for discrete probability distributions in particular.6

If regularity conditions on F are imposed, then we can show the stronger result of uniqueness:

Corollary 1. Suppose that F is differentiable in a neighborhood of its mean, so that its density

F ′ is positive in that neighborhood. Then the optimal fixed-price mechanism that sets the price

as the mean of the distribution F is uniquely optimal.

Indeed, under the assumptions of Corollary 1, F is strictly increasing in a neighborhood of its

mean; hence Γ(p∗;F )−Γ(p;F ) > 0 for any p 6= p∗. Corollary 1 applies under the usual assumption

that F is continuously differentiable with positive density.

We now analyze the worst-case performance of the optimal fixed-price mechanism. A priori,

we expect that fixed-price mechanisms will incur welfare loss due to the impossibility result of

Myerson and Satterthwaite (1983). Our main result of this section shows that, while fixed-price

mechanisms may lead to inefficiency, the welfare loss cannot be too large:

4 Gârleanu and Pedersen’s (2004) Proposition 3, for instance, characterizes conditions under which the midpoint
of the bid and offer prices is an unbiased estimator of the mean of the agents’ values.

5 Specifically, they assume that the distribution is continuously differentiable and satisfies an increasing hazard
rate condition as well as a decreasing reverse hazard rate condition. In Section 5 we will consider their setting
and show how our main result, Theorem 1, extends.

6 This is relevant because, as we show in the proof outline of Theorem 1, the worst-case distributions for the
performance of the optimal price are discrete distributions.
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Theorem 1. For any distribution F with mean µ, denote the first-best gains from trade by

ΓFB(F ), defined by ΓFB(F ) := E[(B − S) · 1B>S. Then the gains from trade that the optimal

fixed-price mechanism achieves are bounded below:

max
p∈R+

Γ(p;F ) = Γ(µ;F ) ≥

[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) for any F ∈ ∆([0, 1]) with mean µ.

A simple interpretation of Theorem 1 can be obtained by performing a Taylor expansion on

the lower bound:[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) =

ΓFB(F )

2
+

[
ΓFB(F )

]2
8µ (1− µ)

+O(
[
ΓFB(F )

]3
).

This implies the following:7

Corollary 2. For any distribution F with mean µ, the optimal fixed-price mechanism achieves

at least 1/2 of the first-best gains from trade ΓFB(F ):

max
p∈R+

Γ(p;F ) = Γ(µ;F ) ≥ 1

2
ΓFB(F ) for any F ∈ ∆([0, 1]) with mean µ.

3.2 Method

We now describe the proof outline of Theorem 1. Technical details are relegated to Appendix A.

Our approach begins with the observation that the gains from trade under the mean price µ

can be expressed as

Γ(µ;F ) =

∫ µ

0

F (x) dx =

∫ µ

0

(µ− x) dF (x).

The worst-case guarantee of Theorem 1 can be found by maximizing first-best gains from trade,

holding fixed the mean and gains from trade under the mean price:

sup
F∈∆([0,1])

ΓFB(F ) subject to


∫ 1

0

x dF (x) = µ,∫ µ

0

(µ− x) dF (x) = η.

(P)

The constraints of the maximization problem (P) are linear with piecewise linear weights.

7 Notably, all higher-order terms must be positive in the Taylor expansion, which converges for all 0 < ΓFB(F ) < 1.
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We now argue that the first-best gains from trade, subject to the constraints of (P), are highest

when the agents’ distribution F is supported on at most 3-points. This argument consists of two

key lemmas.

The first lemma states that the first-best gains from trade are increasing in the convex order.8

Lemma 1. If F ≥cx G, then ΓFB(F ) ≥ ΓFB(G).

The second lemma states that in a maximization program with n − 1 linear constraints with

piecewise linear weights, any continuous objective function that is increasing in the convex order

is maximized on a set of discrete distributions.

Lemma 2. Suppose h : ∆([0, 1]) → R is increasing in the convex order and continuous with

respect to the supremum norm. Let g1, . . . , gn : R+ → R be continuous piecewise linear

functions, such that gj consists of kj pieces. Fix γ1, . . . , γn ∈ R, and denote by ∆k([0, 1]) the set

of distributions in ∆([0, 1]) that are supported on at most k points. Then the value of the

following two maximization problems are the same:

(i) sup
F∈∆([0,1])

h(F ) subject to


∫ 1

0

x dF (x) = µ,∫ 1

0

gj(x) dF (x) = γj, for j = 1, . . . , n.

(ii) sup
F∈∆k([0,1]),where k=

∑n
j=1 kj

h(F ) subject to


∫ 1

0

x dF (x) = µ,∫ 1

0

gj(x) dF (x) = γj, for j = 1, . . . , n.

Moreover, when solving the maximization problem (ii), it suffices to consider F ∈ ∆k([0, 1]) with

masses only on the boundaries of the pieces of g1, . . . , gn.

8 For any two distributions F,G, the convex order ≥cx is defined as follows:

F ≥cx G ⇐⇒
∫

v(x) dF (x) ≥
∫

v(x) dG(x) for any convex function v(·).

See, for example, Chapter 3 of Shaked and Shanthikumar (2007).
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Lemma 2 reduces the infinite-dimensional optimization problem to a finite-dimensional

optimization problem. Instead of (P), it suffices for us to solve:

sup
F∈∆3([0,1])

ΓFB(F ) subject to


∫ 1

0

x dF (x) = µ,∫ µ

0

(µ− x) dF (x) = η.

(P’)

By Lemma 2, it suffices to consider 3-point distributions with masses on {0, µ, 1}. Any such

distribution F can be written as follows:

F (x) =
η

µ
· 1x≥0 +

[
1− η

µ (1− µ)

]
· 1x≥µ +

η

1− µ
· 1x≥1.

Therefore (P’) admits the solution:

sup
F∈∆3([0,1])

ΓFB(F ) = 2η − η2

µ (1− µ)
.

Finally, Theorem 1 from straightforward algebraic manipulation, which we show in Appendix A:

Lemma 3. Let 0 ≤ η ≤ µ (1− µ) such that

ΓFB(F ) ≤ 2η − η2

µ (1− µ)
.

Then

η ≥

[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) .

3.3 Discussion

Our proof of Theorem 1 extends the tools developed in the literature on Bayesian persuasion.

In contrast to Bayesian persuasion problems, our objective function ΓFB(F ) is neither linear nor

convex in F . We show in Lemma 2 that this can be overcome if the objective function ΓFB(F ) is

increasing in the convex order and the weights in the constraints are piecewise linear.

An interesting related result of McAfee (2008) is that setting a price equal to the median of

F achieves an identical worst-case performance of 1/2 of the first-best gains from trade. Because

agents are ex ante symmetric, the median price pmedian is the competitive price: F (pmedian) =
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1− F (pmedian). McAfee’s (2008) result is based on the elegant observation that, for any F ,

Γ(pmedian;F ) =
1

2

∫ ∞
pmedian

[1− F (x)] dx+
1

2

∫ pmedian

0

F (x) dx

≥ 1

2

∫ ∞
0

F (x) [1− F (x)] dx =
1

2
ΓFB(F ).

While this analysis is simple, it does not generalize to prices other than the median of the

distribution. Moreover, by our Proposition 1, the mean price weakly dominates the median

price. By contrast, our analysis in Theorem 1 shows that this bound cannot be achieved except

when ΓFB(F ) = 0.

In reality, the Designer may wish to exclude such pathological distributions from consideration

when evaluating the worst-case performance. This consideration motivates our first extension in

Section 5, where we only consider distributions with mean absolute deviation that are bounded

from below, away from zero. The assumption that the mean absolute deviation is bounded away

from zero ensures that first-best gains from trade are always positive and also bounded away from

zero. We show in Section 5 that Theorem 1 can be strengthened in this setting: the worst-case

performance improves as the mean absolute deviation of the distribution increases.

While Theorem 1 quantifies the worst-case performance of fixed-price mechanisms in terms of

the first-best gains from trade, this approach requires knowing the first-best gains from trade to

begin with. In our second extension in Section 5, we show how the same approach can be used to

establish an upper bound on the welfare loss under the optimal fixed-price mechanism. This upper

bound can be expressed as either a function of the mean or the variance of the distribution F ,

which provides a useful way of estimating the worst-case welfare loss when only simple statistics

of F are known.

We consider two additional extensions in Section 5, which lie beyond our application to size

discovery mechanisms but demonstrate how our methods apply to more general settings. While

Theorem 1 gives the worst-case performance for fixed-price mechanisms, we show that under

some regularity conditions on the agents’ distribution, the same result applies to any dominant-

strategy incentive-compatible mechanism that does not run a budget deficit. Finally, we show that

Theorem 1 can be extended to settings in which there is some asymmetry between the agents.

Finally, in other papers in the robust mechanism design literature, it is often assumed that

the Designer observes only some moments of the agents’ distribution (e.g., only the mean). By

contrast, we assumed in our model that the Designer observes the entire distribution F . This

strengthens the result of our Proposition 1: the mean price is optimal among all fixed-price
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mechanisms that could depend arbitrarily on F , and not only among those that could depend on

F through only its mean.

4 Fixed-Price Mechanisms in Large Markets

While Proposition 1 and Theorem 1 respectively characterize the optimal price and its worst-case

performance in bilateral trade, dark pools allow trades to happen between many different sellers

and buyers. In this section, we show that as the market size grows, not only do welfare losses

vanish as previous papers show, but the optimal price also converges to the competitive price. All

proofs are in Appendix A.

4.1 Model

We consider a market with NS sellers and NB buyers. Each seller owns a single indivisible good,

and each buyer has unit demand. As before, agents are risk-neutral and have quasilinear payoffs.

Agents have independent private values drawn from an identical distribution F . In contrast to

our previous analysis, we impose in this section the assumption that F is twice continuously

differentiable with positive density f on its support [0, 1] ⊂ R+. We denote this family of

distributions by F .

In this market, the Designer chooses a fixed price p ∈ R+, which is allowed to depend on the

distribution F . Having observed p, agents decide whether or not to trade. If there are more buyers

than sellers willing to trade, the Designer randomly selects buyers so that the market clears; the

case when there are more sellers than buyers willing to trade is symmetric. The Designer maximizes

the gains from trade, denoted by Γ(p;F,NS, NB).

4.2 Results

Our first result characterizes the optimal fixed-price mechanism in large markets:

Proposition 2. Let µ denote the mean of the distribution F . The optimal price p∗ satisfies:

p∗ = µ+
ζ ′(F (p∗);NS, NB)

ζ(F (p∗);NS, NB)
· Γ(p∗;F, 1, 1).
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Here, the “large-market scaling function” ζ(x;NS, NB) is defined by

ζ(x;NS, NB) :=
1

x (1− x)

NB∑
m=1

NS∑
n=1

min{m,n}
(
NB

m

)(
NS

n

)
[1− F (p)]NS+m−n [F (p)]NB−m+n .

Proposition 2 generalizes Proposition 1 by deriving the dependence of the optimal price p∗ on

the market size. The deviation of p∗ from the mean depends on the market size and the agents’

distribution.

We now study the case when markets are balanced: NS = NB. The assumption of balanced

markets is consistent with our assumption that agents are ex ante symmetric, with inventory

position independent of their private valuation of the good. Ex ante, agents have equal probability

of being a seller or a buyer, so as the number of agents grows, the seller pool and the buyer pool

are equal in size. For ease of notation, we write ΓN(p∗;F ) = Γ(p∗;F,N,N).

If the market is balanced and the agents’ distribution is symmetric (e.g., uniform distributions

and symmetric triangular distributions), then the mean price remains optimal:

Corollary 3. Suppose that NS = NB, and that F is symmetric with mean µ. Then the mean

price p∗ = µ is optimal.

Intuitively, the assumptions of Corollary 3 ensure that, conditional on trading, agent values

are still symmetrically distributed around the mean. Thus the optimal price is the mean.

Our next result shows that, in balanced markets, the worst-case performance of the optimal

fixed-price mechanism improves as market size increases:

Proposition 3. Suppose that NS = NB = N , and let ΓFB
N (F ) denote the first-best gains from

trade. For any distribution F satisfying ΓFB
1 (F ) > 0, the worst-case performance of the optimal

fixed-price mechanism is bounded below by an increasing fraction of ΓFB
N (F ):

max
p∈R+

ΓN(p;F ) ≥ κ(N) · ΓFB
N (F ).

The fraction κ(N) is increasing in N and satisfies limN→∞ κ(N) = 1.

Proposition 3 indicates that thicker markets improve the average welfare per agent in the worst-

case. As the market grows, the gains from trade realized per agent under the optimal fixed-price

mechanism increases and converges to the first-best gains from trade.
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4.3 Implications for market design

Proposition 1 and Proposition 2 characterize how the optimal price should depend on market

size. In contrast to Proposition 1, however, Proposition 2 shows that the optimal design in large

markets requires more distributional knowledge than only the mean. Two questions arise: First,

how should the price be determined when the Designer has only simple statistics of the agents’

distribution, such as the mean and the median? Second, how much can errors in design affect the

performance of fixed-price mechanisms? These questions are important in practical market design,

such as determining how size discovery mechanisms should derive prices from lit exchanges.

We answer both questions under the assumption that markets are balanced. However, our

results can be extended to more general settings as well.9

The answer to the first question is the simple heuristic of choosing the mean price in thin

markets, but the competitive price in thick markets:

Proposition 4. Suppose that NS = NB = N . For any distribution F , as N → ∞, the optimal

fixed-price mechanism converges to the competitive price at rate O(N−1/4).

Proposition 4 complements the intuition that the welfare loss from setting the competitive

price vanishes as the market grows. It shows that, not only does efficiency converge, but prices

do as well. For large markets, the rate of O(N−1/4) ensures that the optimal price is close to the

competitive price.

Because this heuristic yields only an approximately optimal price, it becomes important to

quantify the welfare loss that might result from setting an approximately optimal price rather

than the optimal price. The answer to the second question shows that small errors lead to small

welfare loss:

Proposition 5. Suppose that NS = NB = N , and fix ε > 0. Given a distribution F , let the

optimal fixed-price mechanism be p∗. For any price p such that |p− p∗| ≤ ε,

ΓN(p∗;F )− ΓN(p;F ) ≤ Cε · max
x:|x−p∗|≤ε

|f(x)| · ΓFB
N (F ).

Here, C > 0 is a constant independent of F and N .

9 In more general settings, a required assumption concerns how the rate at which market tightness, NS/NB , grows
as the total number of agents increases. Typically, the rate at which market tightness grows can be determined
by taking “replicas” of an exchange with a finite number of agents.
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The key point of Proposition 5 is that the worst-case welfare loss from a small error in price is

small, and depends on the distribution F only through its density in a neighborhood of the optimal

price. Intuitively, this is because setting the price precisely equal to the optimum is important

exactly when the agents’ values are concentrated around the optimal price. Nevertheless, the

expected gains from trade are continuous in price, and so the welfare loss cannot be too large.

5 Extensions

In this section, we analyze four variations of our model. In each extension, we show how analogs

of our main results continue to hold using essentially the same methods presented in Section 3.

All proofs are in Appendix A.

5.1 Distributions with bounded mean absolute deviation

While the Designer may have some uncertainty over the agents’ distributions, the Designer may

deem unrealistic distributions that assign essentially unit probability that any agent’s value for

the good is fixed. Such distributions underlie the worst-case bound of Corollary 2, which can be

attained only when ΓFB(F ) = 0.

To exclude these distributions, we adopt the same model as Section 2, and additionally require

distributions to have mean absolute deviation bounded away from zero. That is, we consider

distributions F that have positive mean µ such that∫ 1

0

|µ− x| dF (x) ≥ α for some α > 0.

In this constraint, the weight function x 7→ |µ− x| is continuous and piecewise linear. Moreover,

as this constraint binds, Lemma 2 applies. We obtain the following analog of Theorem 1:

Theorem 2. For any distribution F with mean absolute deviation bounded below by α > 0, the

optimal fixed-price mechanism achieves at least 1/ (2− 2α) of the first-best gains from trade:

max
p∈R+

Γ(p;F ) = Γ(µ;F ) ≥ 1

2− 2α
ΓFB(F ).

The mean absolute deviation is a measure of statistical dispersion of agent values. Theorem 2

shows that as dispersion increases, the performance of fixed-price mechanisms improve relative to
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first-best gains from trade. Increased dispersion allows for the agents’ values to be further apart

with higher probability, allowing any fixed price to better capture the potential gains from trade.

5.2 Estimating welfare loss

To estimate the worst-case performance of Theorem 1, the Designer is required to know the first-

best gains from trade. However, the same approach as Theorem 1 in fact allows the Designer to

estimate the welfare loss as a function of only the mean or the variance of the distribution F . This

is relevant in practical market design, such as when the Designer may want to establish a bound

on the worst-case welfare loss while only knowing simple statistics of F .

Formally, using the same model as Section 3, our proof outline of Theorem 1 implies that the

maximum welfare loss is bounded above:

Theorem 3. For any distribution F with mean µ, the maximum welfare loss under the optimal

fixed-price mechanism is:

ΓFB(F )− Γ(µ;F ) ≤ µ (1− µ)

4
≤ 1

16
.

Moreover, if F has variance σ2 and is continuous, then the maximum welfare loss also satisfies:

ΓFB(F )− Γ(µ;F ) ≤ 1

4
σ2 +

1

8
√

3
.

Theorem 3 shows that the absolute welfare loss is small relative to the mean and variance of F .

This extends our understanding of Theorem 1: even though the optimal fixed-price mechanism may

achieve as small as 1/2 of the first-best gains from trade, the absolute welfare loss is nonetheless

still small, therefore supporting the practical use of fixed-price mechanisms.

5.3 Relaxing budget balance

Because of applications to size discovery mechanisms, our main results in Section 3 focused on

fixed-price mechanisms, which are ex post budget-balanced. For more general applications, the

budget balance assumption may not be important. We show in this subsection how our methods

may be extended to more general classes of mechanisms when the budget balance condition is

relaxed.

Specifically, we assume that the ex post budget-balanced condition is relaxed to an ex post no-

deficit condition. We assume an additional regularity condition on the agents’ value distribution:
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Assumption 1. The distribution F is continuously differentiable with density f , such that the

hazard rate is increasing but the reverse hazard rate is decreasing; that is:

θ 7→ f(θ)

1− F (θ)
is increasing and θ 7→ f(θ)

F (θ)
is decreasing.

Shao and Zhou (2016) show that, under Assumption 1, the optimal dominant-strategy

mechanism that satisfies the ex post no-deficit condition must be either: (i) a fixed-price

mechanism with price equal to the mean µ of the distribution F ; or (ii) an option mechanism,

which dictates trade if and only if the seller’s value exceeds µ. Their elegant characterization of

the optimal mechanism replaces Proposition 1, which allows Theorem 1 to extend easily to this

setting:

Theorem 4. For any distribution F satisfying Assumption 1, the gains from trade ΓDS,ND(F )

that the optimal dominant-strategy mechanism that also satisfies the ex post no-deficit condition

achieves are bounded below:

ΓDS,ND(F ) ≥

[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) for any F ∈ ∆([0, 1]) with mean µ.

Theorem 4 shows that the ex post budget balance condition does not play a substantial role in

pinning down the worst-case performance of fixed-price mechanisms in Theorem 1. Instead, welfare

loss in the worst case can be attributed to only the restriction to dominant-strategy mechanisms.

5.4 Asymmetric agents

While agents were assumed to be ex ante symmetric in our model due to applications to financial

markets, we relax the assumption in this subsection, allowing the seller’s distribution FS to differ

from the buyer’s distribution FB. We assume FS and FB to be supported on [0, 1]. Except for

this difference, we maintain the same model of bilateral trade as in Section 2.

Our main results extend naturally to this setting when the asymmetry between agents is small:

Proposition 6. Suppose that ||FS − FB ||∞ ≤ ε, where ε is sufficiently small.10 Then the worst-

case performance of either agent’s mean, µS or µB, achieves [1/2 + O(ε)] of the first-best gains

10 Here, || · ||∞ denotes the supremum norm: ||G ||∞ = supx∈R+
|G(x)| for a given function G.

16



from trade: 
Γ(µS;FS, FB) ≥

[
1

2
+O(ε)

]
ΓFB(FS, FB),

Γ(µB;FS, FB) ≥
[

1

2
+O(ε)

]
ΓFB(FS, FB).

Here, Γ(p;FS, FB) denotes the gains from trade realized by the fixed-price mechanism p in

expectation, and ΓFB(FS, FB) denotes the first-best gains from trade.

When the asymmetry between agents is small, either of µS or µB is close to the optimal price.

On the other hand, because asymmetry between agents is small, the optimal price achieves close

to 1/2 of the first-best gains from trade even in the worst case.

When the asymmetry between agents is large, it is known that the optimal price may no longer

perform well relative to first-best gains from trade in the worst case. We give a more detailed

discussion of this case in Appendix B.2.

6 Discussion

We have presented in this paper a simple model that suggests why fixed-price mechanisms are used

commonly in practice. In addition to being dominant-strategy incentive-compatible, fixed-price

mechanisms are simple to design and have robust worst-case efficiency guarantees. Strikingly,

while the competitive price may be approximately efficient in thick markets, the mean price is

approximately optimal instead in thin markets.

Our methods enable us to provide a tight characterization of the worst-case performance, which

distinguishes our work from much of the related literature. Analyzing the worst-case performance

of mechanisms is difficult because it entails solving a nontrivial infinite-dimensional minimax

problem. Previous work includes that of Arnosti et al. (2016) (Theorem 2), which analyzes the

worst-case performance of an auction mechanism over power-law distributions. By parametrizing

power-law distributions, their analysis simplifies to a finite-dimensional optimization problem.

Carrasco et al. (2018) consider the worst-case optimal mechanism that maximizes revenue in the

classic monopoly problem over buyer distributions, assuming that the seller monopolist knows the

first N moments of the buyer’s distribution.

Beyond the economic literature, our work is directly related to numerous papers in the

computer science literature. The closest paper to ours in this literature is that of Blumrosen and

Dobzinski (2016), who also study fixed-price mechanisms in the bilateral trade problem.
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However, they study what fraction of first-best welfare fixed-price mechanisms can achieve, as

opposed to first-best gains from trade. While they allow asymmetry between agents to be

arbitrarily large, they are unable to provide a tight characterization of the worst-case

performance. Instead, they prove a lower bound on the worst-case performance by explicitly

constructing a mechanism that achieves that performance.11 Various papers in the computer

science literature have taken a similar approach to this problem as well as others, including work

by Blumrosen and Dobzinski (2014), Blumrosen and Mizrahi (2016), Colini-Baldeschi et al.

(2016) and Brustle et al. (2017).

Returning to our application to financial markets, we now discuss other considerations that

are important to size discovery mechanisms in practice, as well as the limitations of our results

for this purpose.

An important practical consideration for the design of size discovery mechanisms is how these

mechanisms interact with the lit exchanges in which price discovery occurs. We have modeled

our agents as liquidity traders in these markets, who are unsure of the “right” price and so

behave as price-takers. We have shown that designing the optimal price for this setting is simple

and has robust worst-case performance guarantees. Of course, size discovery mechanisms are

attractive to informed traders as well, who may prefer size discovery mechanisms to lit exchanges

for strategic price impact avoidance. This substitution may affect the reliability of the price

discovery mechanism in providing the “right” price, and hence can result in welfare loss. Pioneering

work on this tradeoff—including work by Zhu (2014), Duffie and Zhu (2017) and Antill and Duffie

(2018)—shows that the market designer has to incentivize informed traders to participate in the

price discovery mechanism, and to mitigate the incentives of informed traders to exploit the size

discovery mechanism for price impact avoidance.

Relatedly, dynamic considerations are also important for the efficiency of size discovery

mechanisms. We took an extreme stance in our static setting, where unrealized trades are simply

foregone. In practice, agents trade dynamically, and unrealized trades from a single iteration of a

size discovery mechanism can be realized either in the next iteration or in the lit exchange,

subject to delay costs. The possibility of future trade motivates important questions in the

design of financial markets: What is the optimal frequency of trade? How does competition

between lit and dark exchanges impact efficiency?

Ultimately, these questions aim to address the issue of whether the amalgam of price

discovery and size discovery mechanisms in our financial markets is efficient. Clearly, in this

11 While their setting and methods differ from ours, their methods are rather interesting. We thus provide a
separate discussion and analysis of their setting and methods in Appendix B.2.
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context, our Theorem 1 should not be taken literally. Although a constant-factor approximation

is often celebrated in the computer science literature, a worst-case performance of 1/2 is often

unsatisfactory for economic applications, especially if the economic efficiency at stake is as large

as it is in the financial market. The extensions that we studied suggest that the worst-case

performance binds not due to our benchmark of first-best gains from trade, but rather due to

unrealistic assumptions on the set of distributions allowed. A more reasonable estimate would

account for statistical dispersion in the agents’ values. With Theorem 2, we showed how the

worst-case performance can be improved; but the same analysis also applies straightforwardly to

other measures of statistical dispersion such as the interquartile range, different quantiles, and

the median absolute deviation.

With these issues in mind, then, our paper provides a simple framework for analyzing the

efficiency of size discovery mechanisms. While abstractions from informational asymmetry and

dynamics simplify the much broader problem of financial market design, they provide sharp

analytical results that suggest that, at least on a heuristic level, size discovery mechanisms can

perform reasonably well even when very little information is known about the underlying

distribution of traders’ values.

On a more general level, designing mechanisms that are robust to the distribution of agents’

values is important beyond just financial market design. Our approach has been different from

that of many others in the robust mechanism design literature: instead of modeling robustness

directly through a worst-case objective, we have chosen to study the worst-case performance of

a classical Bayesian objective. As the various extensions in Section 5 illustrate, this approach is

flexible and can be adapted to study more complicated problems.
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A Appendix: Omitted Proofs

A.1 Proof of Theorem 1

Theorem 1. For any distribution F with mean µ, the gains from trade that the optimal fixed-

price mechanism achieves are bounded below:

max
p∈R+

Γ(p;F ) = Γ(µ;F ) ≥

[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) for any F ∈ ∆([0, 1]) with mean µ.

As argued in the main text, we begin by proving Lemmas 1 and 2. We then use the result of

both lemmas to prove Theorem 1, with the help of algebraic manipulation in Lemma 3.

Lemma 1. If F ≥cx G, then ΓFB(F ) ≥ ΓFB(G).

Proof of Lemma 1. Since F ≥cx G, for any z:∫ 1

0

(b− z)+ dF (b) ≥
∫ 1

0

(b− z)+ dG(b).

Consider the function:

φF : z 7→
∫ 1

0

(b− z)+ dF (b).

Since z 7→ (b− z)+ is convex, therefore φF as the expectation of convex functions is convex.

Consequently:

ΓFB(F ) =

∫ 1

0

φF (z) dF (z) ≥
∫ 1

0

φF (z) dG(z) ≥
∫ 1

0

φG(z) dG(z) = ΓFB(G).

Lemma 2. Suppose h : ∆([0, 1]) → R is increasing in the convex order and continuous with

respect to the supremum norm. Let g1, . . . , gn : R+ → R be continuous piecewise linear

functions, such that gj consists of kj pieces. Fix γ1, . . . , γn ∈ R, and denote by ∆k([0, 1]) the set

of distributions in ∆([0, 1]) that are supported on at most k points. Then the value of the

following two maximization problems are the same:
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(i) sup
F∈∆([0,1])

h(F ) subject to


∫ 1

0

x dF (x) = µ,∫ 1

0

gj(x) dF (x) = γj, for j = 1, . . . , n.

(ii) sup
F∈∆k([0,1]),where k=

∑n
j=1 kj

h(F ) subject to


∫ 1

0

x dF (x) = µ,∫ 1

0

gj(x) dF (x) = γj, for j = 1, . . . , n.

Moreover, when solving the maximization problem (ii), it suffices to consider F ∈ ∆k([0, 1]) with

masses only on the boundaries of the pieces of g1, . . . , gn.

Proof of Lemma 2. Let F ∈ ∆([0, 1]) satisfy∫ 1

0

x dF (x) = µ and

∫ 1

0

gi(x) dF (x) = γi.

Because h is continuous with respect to the L1 norm, we may assume without loss of generality

that F is a smooth (e.g., C2) function supported on [0, 1]; otherwise, we can approximate any

distribution arbitrarily well using such smooth functions. We proceed by constructing

F̃ ∈ ∆k([0, 1]), where k =
∑n

j=1 kj, such that h(F ) ≤ h(F̃ ) and

∫ 1

0

x dF̃ (x) = µ and

∫ 1

0

gj(x) dF̃ (x) = γj for j = 1, . . . , n.

Let 0 = s1 < s2 < · · · < sk = 1 be the boundaries of the pieces of the piecewise linear functions

g1(x), . . . , gn(x). For ease of exposition, we have assumed here that the boundaries are distinct; a

similar argument holds if the boundaries are not distinct. Define mi (i = 1, . . . , k) by

m1 =
1

s2 − s1

∫ s2

s1

(s2 − x) dF (x),

mk =
1

sk − sk−1

∫ sk

sk−1

(x− sk−1) dF (x),

mi =
1

si − si−1

∫ si

si−1

(x− si−1) dF (x) +
1

si+1 − si

∫ si+1

si

(si+1 − x) dF (x) for i = 2, . . . , k − 1.
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We construct F̃ as follows:

F̃ (x) =
k∑
i=1

mi · 1x≤si .

By definition, m1, . . . ,mk satisfy 0 ≤ m1, . . . ,mk ≤ 1 and m1 + · · · + mk = 1; hence F̃ is

a valid k-point cumulative distribution function: F̃ ∈ ∆k([0, 1]). We claim that F̃ ≥cx F . By

Theorem 3.A.1 of Shaked and Shanthikumar (2007), F̃ ≥cx F if and only if∫ z

0

F̃ (x) dx ≥
∫ z

0

F (x) dx for any z ∈ [0, 1].

Observe that by our definition of m1, . . . ,mk,∫ si+1

si

F̃ (x) dx = (m1 + · · ·+mi) · (si+1 − si)

= F (si) · (si+1 − si) +

∫ si+1

si

(si+1 − x) dF (x) =

∫ si+1

si

F (x) dx for i = 1, . . . , k − 1.

Therefore, our construction ensures that∫ si

0

F̃ (x) dx =

∫ si

0

F (x) dx for i = 1, . . . , k.

Moreover, F̃ (x) is constant on each interval [si, si+1); hence

∂

∂z

∫ z

si

[
F̃ (x)− F (x)

]
dx = F̃ (si)− F (z) is decreasing for z ∈ [si, si+1).

Thus, on [si, si+1),

z 7→
∫ z

si

[
F̃ (x)− F (x)

]
dx is concave.

This function achieves its minimum at either si or si+1; also, its value at either endpoint is zero.

This shows that ∫ z

si

F̃ (x) dx ≥
∫ z

si

F (x) dx for z ∈ [si, si+1).

We thus conclude that F̃ ≥cx F , as claimed. Since h is increasing in the convex order, this implies

that h(F ) ≤ h(F̃ ). So it remains to verify that F̃ satisfies∫ 1

0

x dF̃ (x) = µ and

∫ 1

0

gj(x) dF̃ (x) = γj for j = 1, . . . , n.
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We use the key observation that∫ si+1

si

x dF (x) =
si

si+1 − si

∫ si+1

si

(si+1 − x) dF (x) +
si+1

si+1 − si

∫ si+1

si

(x− si) dF (x).

Summing over both sides for i = 1, . . . , k − 1, we get

µ =

∫ 1

0

x dF (x) =
k−1∑
i=1

∫ si+1

si

x dF (x) =
k∑
i=1

simi =

∫ 1

0

x dF̃ (x).

More generally, for any constants αi, β1:∫ si+1

si

(αi + βix) dF (x) =
αi + βisi
si+1 − si

∫ si+1

si

(si+1 − x) dF (x) +
αi + βisi+1

si+1 − si

∫ si+1

si

(x− si) dF (x).

Therefore, for any continuous piecewise linear function g : [0, 1]→ R such that g(x) = αi +βix on

[si, si+1], we sum over both sides of the above expression for i = 1, . . . , k − 1 to get

∫ 1

0

g(x) dF (x) =
k−1∑
i=1

∫ si+1

si

(αi + βix) dF (x) =
k∑
i=1

g(si)mi =

∫ 1

0

g(x) dF̃ (x).

Lemma 3. Let 0 ≤ η ≤ µ (1− µ) such that

ΓFB(F ) ≤ 2η − η2

µ (1− µ)
.

Then

η ≥

[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) .

Proof of Lemma 3. We view the given hypothesis as a quadratic inequality in η. By the quadratic

formula, the solution to this inequality must satisfy

1−
√

1− ΓFB(F )
µ(1−µ)

1
µ(1−µ)

≤ η ≤
1 +

√
1− ΓFB(F )

µ(1−µ)

1
µ(1−µ)

=⇒ 1− η

µ (1− µ)
≤

√
1− ΓFB(F )

µ (1− µ)
.

The implication follows from the latter inequality.
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Proof of Theorem 1. We now combine the results of Lemmas 1, 2 and 3 to prove Theorem 1. By

Lemma 1, ΓFB is increasing in the convex order. Moreover, if there exists a sequence Fm → F in

the supremum norm, then limm→∞ Fm(x) = F (x) for all points x ∈ [0, 1] at which F is continuous;

hence dFm converges weakly to dF . In particular, for any bounded continuous function φ : [0, 1]→
R, ∫ 1

0

φ(x) dFm(x)→
∫ 1

0

φ(x) dF (x).

Therefore ΓFB(Fm) → ΓFB(F ); hence ΓFB is continuous in the supremum norm. Consequently,

Lemma 2 applies. It suffices for us to solve:

sup
F∈∆3([0,1])

ΓFB(F ) subject to


∫ 1

0

x dF (x) = µ,∫ µ

0

(µ− x) dF (x) = η.

Now, for any F ∈ ∆3([0, 1]) with mean µ with masses on {0, µ, 1}, we can parametrize F by:

F (x) =
η

µ
· 1x≥0 +

[
1− η

µ (1− µ)

]
· 1x≥µ +

η

1− µ
· 1x≥1.

Therefore (P’) admits the solution:

sup
F∈∆3([0,1])

ΓFB(F ) = 2η − η2

µ (1− µ)
.

Thus, for any F ∈ ∆([0, 1]), we have

ΓFB(F ) ≤ 2 Γ(µ;F )− [Γ(µ;F )]2

µ (1− µ)
.

By Lemma 3, the latter implies that

Γ(µ;F ) ≥

[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) .

This completes the proof of Theorem 1.
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A.2 Proof of Proposition 2

Proposition 2. Let µ denote the mean of the distribution F . The optimal price p∗ satisfies:

p∗ = µ+
ζ ′(F (p∗);NS, NB)

ζ(F (p∗);NS, NB)
· Γ(p∗;F, 1, 1).

Here, the “large-market scaling function” ζ(x;NS, NB) is defined by

ζ(x;NS, NB) :=
1

x (1− x)

NB∑
m=1

NS∑
n=1

min{m,n}
(
NB

m

)(
NS

n

)
[1− F (p)]NS+m−n [F (p)]NB−m+n .

Proof. The gains from trade under the fixed price p can be written as

Γ(p;F,NS, NB)

= {E [θ | θ > p]− E [θ | θ ≤ p]} ·
NB∑
m=1

NS∑
n=1

min{m,n}
(
NB

m

)(
NS

n

)
[1− F (p)]NS+m−n [F (p)]NB−m+n

=
Γ(p;F, 1, 1)

F (p) [1− F (p)]
·

N∑
m=1

N∑
n=1

min{m,n}
(
N

m

)(
N

n

)
[1− F (p)]N+m−n [F (p)]N−m+n .

This can be simplified using the large-market scaling function defined in the statement of the

proposition:

Γ(p;F,NS, NB) = ζ(F (p);NS, NB) · Γ(p;F, 1, 1).

Since F is assumed to be twice continuously differentiable with density f , taking the first-order

condition yields

0 =
∂ Γ(p∗;F,NS, NB)

∂p
= ζ ′(F (p∗);NS, NB)f(p∗) ·Γ(p∗;F, 1, 1)+ζ(F (p∗);NS, NB) · ∂ Γ(p∗;F, 1, 1)

∂p
.

Denoting by µ the mean of F ,

∂ Γ(p;F, 1, 1)

∂p
= (µ− p) · f(p).

Since f is assumed to be positive, the optimal price p∗ satisfies

ζ ′(F (p∗);NS, NB) · Γ(p∗;F, 1, 1) + (µ− p∗) · ζ(F (p∗);NS, NB) = 0.
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Rearranging yields the desired expression. Finally, setting p∗ = 0, 1 is dominated by setting any

p∗ ∈ (0, 1); hence the first-order condition must be satisfied by the optimal price p∗.

Corollary 2. Suppose that NS = NB, and that F is symmetric with mean µ. Then the mean

price p∗ = µ is optimal.

Proof. For any N , the large-market scaling function ζ(x;N,N) is symmetric about x = 1/2, where

it achieves its maximum. Since F is symmetric, F (µ) = 1/2; hence Proposition 2 implies that the

mean price p∗ = µ is optimal.

A.3 Proof of Proposition 3

Proposition 3. Suppose that NS = NB = N , and let ΓFB
N (F ) denote the first-best gains from

trade. For any distribution F satisfying ΓFB
1 (F ) > 0, the worst-case performance of the optimal

fixed-price mechanism is bounded below by an increasing fraction of ΓFB
N (F ):

max
p∈R+

ΓN(p;F ) ≥ κ(N) · ΓFB
N (F ).

The fraction κ(N) is increasing in N and satisfies limN→∞ κ(N) = 1.

Proof. The proposition follows straightforwardly from Theorem 6 of Gresik and Satterthwaite

(1989), who show that ∣∣∣∣ 1

N
max
p∈R+

ΓN(p;F )− 1

N
ΓFB
N (F )

∣∣∣∣ ≤ O(N−1/2).

That is, the average gains from trade realized per agent in the optimal fixed-price mechanism

converges at a rate O(N−1/2) to the first-best. Therefore, there exists some constant C > 0 such

that∣∣∣∣ 1

N
max
p∈R+

ΓN(p;F )− 1

N
ΓFB
N (F )

∣∣∣∣ ≤ C ·N−1/2 =⇒ 1

N
max
p∈R+

ΓN(p;F ) ≥ 1

N
ΓFB
N (F )− C ·N−1/2.

Note that ΓFB
N (F ) ≥ N ΓFB

1 (F ) for any N , since the first-best allocation performs weakly better

than splitting agents into N buyer-seller pairs and realizing the first-best outcome within each

pair. Therefore:

max
p∈R+

ΓN(p;F ) ≥
[
1− C ·N−1/2

ΓFB
1 (F )

]
ΓFB
N (F ).
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Thus we may choose κ(N) = 1 − CN−1/2/ΓFB
1 (F ), which is increasing in N and satisfies

limN→∞ κ(N) = 1.

A.4 Proof of Proposition 4

Proposition 4. Suppose that NS = NB = N . For any distribution F , as N → ∞, the optimal

fixed-price mechanism converges to the competitive price at rate O(N−1/4).

Proof. To show Proposition 4, we first derive properties that the large-market scaling function ζN

must satisfy. Denote

ζN(x) :=
1

N
ζ(x;N,N) =

1

Nx (1− x)

N∑
m=1

N∑
n=1

min{m,n}
(
N

m

)(
N

n

)
(1− x)N+m−n xN−m+n.

Consider random variables Z1 ∼ Bin(N, x) and Z2 ∼ Bin(N, 1− x). Then in fact:

E [min{Z1, Z2}] =
N∑
m=1

N∑
n=1

min{m,n}
(
N

m

)(
N

n

)
(1− x)N+m−n xN−m+n.

Therefore, convergence properties of ζN(x) are equivalent to the concentration of min{Z1, Z2}
around its mean as N →∞. Since ζN(x) is symmetric about x = 1/2, we assume without loss of

generality that x ∈ [0, 1/2].

We first apply concentration bounds on Z1 and Z2 separately. By Hoeffding’s inequality,

observe that Z1 must be concentrated about its mean of Nx; that is, for any t:

P [|Z1 −Nx| > t] < 2 exp

(
−2t2

N

)
.

Likewise, Z2 must be concentrated about its mean of N (1− x):

P [|Z2 −N (1− x) | > t] < 2 exp

(
−2t2

N

)
.
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Now, given that x ∈ [0, 1/2] by assumption, we have:

P [|min{Z1, Z2} −min{Nx,N (1− x)}| < t] ≥ P [|Z1 −Nx| < t] · P [|Z2 −N (1− x) | < t]

≥
[
1− 2 exp

(
−2t2

N

)]2

≥ 1− 4 exp

(
−2t2

N

)
.

Thus min{Z1, Z2} must be concentrated around min{Nx,N (1− x)} as N → ∞. Applying

Jensen’s inequality for z 7→ |z| yields, for any t > 0:

|Nx (1− x) ζN(x)−min{Nx,N (1− x)}|

= |E [min{Z1, Z2}]−min{Nx,N (1− x)}|

≤ P [|min{Z1, Z2} −min{Nx,N (1− x)}| < t] · t

+ P [|min{Z1, Z2} −min{Nx,N (1− x)}| ≥ t] · |Nx (1− x) ζN(x)−min{Nx,N (1− x)}| .

Thus, for t > 0 satisfying exp (−2t2/N) < 1/4:

|Nx (1− x) ζN(x)−min{Nx,N (1− x)}| ≤ t

1− 4 exp
(
−2t2

N

) . (†)

Now, we prove the claim of Proposition 4. Fix a distribution F , and let F (µ) ∈ (0, 1). Suppose

that F (µ) ≤ 1/2. Denote by p∗N the optimal price when there are N agents on each side of the

market. If F (p∗N) < F (µ), since ζN(x) is increasing on [0, 1/2] and decreasing on [1/2, 1], hence

Proposition 2 implies that:

ζ ′N(F (p∗N))

ζN(F (p∗N))
· Γ(p∗N ;F, 1) > 0 =⇒ p∗N > µ,

whence F (p∗N) > F (µ), a contradiction. If F (p∗N) > 1/2, then Proposition 2 implies that:

ζ ′N(F (p∗N))

ζN(F (p∗N))
· Γ(p∗N ;F, 1) < 0 =⇒ p∗N < µ,

whence F (p∗N) < F (µ) ≤ 1/2, a contradiction. Thus F (µ) ≤ 1/2 implies that F (p∗N) ∈ [F (µ), 1/2]

for any N . Symmetrically, F (µ) ≥ 1/2 implies that F (p∗N) ∈ [1/2, F (µ)] for any N .

By symmetry, we assume F (µ) ≤ 1/2 without loss of generality, so that F (p∗N) ∈ [F (µ), 1/2]

for any N . Then we may take t = Cx
√
N/F (µ), for some sufficiently large constant C > 0, in (†)
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to get:

|Nx (1− x) ζN(x)−min{Nx,N (1− x)}| ≤ Cx
√
N

F (µ)
[
1− 4 exp

(
− 2C2x2

[F (µ)]2

)] .
Therefore, for any x ∈ [F (µ), 1/2], we have:∣∣∣∣ζN(x)−min

{
1

x
,

1

1− x

}∣∣∣∣ ≤ O(N−1/2) uniformly in x ∈ [F (µ), 1/2].

For ease of notation, we will write

ζ∞(x) := min

{
1

x
,

1

1− x

}
and Γ∞(p;F ) := Γ1(p;F ) · ζ∞(x).

For ease of notation, we will denote normalize the gains from trade by the number of agents

on each side of the market: ΓN(p;F ) = ΓN(p;F )/N and Γ
FB

N (F ) = ΓFB
N (F )/N . Let p∗∞ denote

the competitive price. We can verify that Γ∞(p∗∞;F ) = Γ
FB

∞ (F ) = limN→∞ Γ
FB

N (F ); that is, the

competitive price p∗∞ is optimal and achieves the first-best gains from trade in the limit as N →∞.

Next, since F ∈ F is assumed to be twice continuously differentiable, so is Γ∞(p;F ); hence

Taylor’s theorem applies. Since ∂Γ∞(p∗∞;F )/∂p = 0, hence:

Γ∞(p∗N ;F ) = Γ∞(p∗∞;F ) +
(p∗N − p∗∞)2

2
· ∂

2

∂p2
Γ∞(p∗∞;F ) +R2(p∗N) · (p∗N − p∗∞)2 ,

where R2 is the Peano form of the remainder such that limp→p∗∞ R2(p) = 0. On the other hand:

∣∣Γ∞(p∗N ;F )− Γ∞(p∗∞;F )
∣∣ ≤ ∣∣Γ∞(p∗N ;F )− ΓN(p∗N ;F )

∣∣+
∣∣ΓN(p∗N ;F )− Γ∞(p∗∞;F )

∣∣
≤
∣∣Γ∞(p∗N ;F )− ΓN(p∗N ;F )

∣∣+
∣∣∣ΓN(p∗∞;F )− Γ

FB

∞ (F )
∣∣∣ .

By Theorem 6 of Gresik and Satterthwaite (1989), the latter term is∣∣∣ΓN(p∗∞;F )− Γ
FB

∞ (F )
∣∣∣ ≤ O(N−1/2).

Moreover, as we showed earlier, the former term is

∣∣Γ∞(p∗N ;F )− ΓN(p∗N ;F )
∣∣ = Γ1(p∗N ;F ) · |ζN(F (p∗N))− ζ∞(F (p∗N))| ≤ O(N−1/2).
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These imply that

O(N−1/2) ≥
∣∣Γ∞(p∗N ;F )− Γ∞(p∗∞;F )

∣∣ = (p∗N − p∗∞)2

∣∣∣∣12 ∂2

∂p2
Γ∞(p∗∞;F ) +R2(p∗N)

∣∣∣∣ .
Finally, because R2(p∗N) → 0 as N → ∞ and ∂2Γ∞(p∗∞;F )/∂p2 > 0, hence we get the desired

result:

|p∗N − p∗∞| ≤ O(N−1/4).

A.5 Proof of Proposition 5

Proposition 5. Suppose that NS = NB = N , and fix ε > 0. Given a distribution F , let the

optimal fixed-price mechanism be p∗. For any price p such that |p− p∗| ≤ ε,

ΓN(p∗;F )− ΓN(p;F ) ≤ Cε · max
x:|x−p∗|≤ε

|f(x)| · ΓFB
N (F ).

Here, C > 0 is a constant independent of F and N .

Proof. As in Proposition 2, we express the gains from trade using the large-market scaling function:

1

N N
Γ(p;F ) =

1

N
Γ1(p;F ) · ζ(F (p);N,N) = Γ1(p;F ) · ζN(F (p)).

Here, as in Proposition 4, ζN(x) := ζ(x;N,N)/N . Additionally, we define:

M1(N) := sup
x∈[0,1]

|ζN(x)| and M2(N) := sup
x∈[0,1]

|ζ ′N(x)|.

We can prove that ζN+1(x) ≥ ζN(x) ≥ 0 and that ζN(x) is symmetric about x = 1/2; moreover,

limN→∞ ζN(x) = min{1/x, 1/(1 − x)} by the proof of Proposition 4. Consequently, M1(N) ≤ 2

for all N ; similarly, M2(N) ≤ 4 for all N . Thus, for any price p:

1

N
|ΓN(p∗;F )− ΓN(p;F )| = |ζN(F (p∗)) Γ1(p∗;F )− ζN(F (p)) Γ1(p;F )|

≤ ζN(F (p)) · |Γ1(p∗;F )− Γ1(p;F )|+ Γ1(p∗;F ) · |ζN(F (p∗))− ζN(F (p))|.
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Observe that

|Γ1(p∗;F )− Γ1(p;F )| =
∣∣∣∣(µ− p) [F (p∗)− F (p)] +

∫ p∗

p

[F (x)− F (p∗)] dx

∣∣∣∣
≤ |F (p∗)− F (p)| · |µ− p∗| ≤ |F (p∗)− F (p)| · ΓFB

1 (F ).

On the other hand,

|ζN(F (p∗))− ζN(F (p))| ≤M2(N) · |F (p∗)− F (p)|.

Therefore, for any price p such that |p− p∗| < ε:

1

N
|ΓN(p∗;F )− ΓN(p;F )| ≤ 6ε · max

x:|x−p∗|≤ε
|f(x)| · ΓFB

1 (F ) ≤ 6ε · max
x:|x−p∗|≤ε

|f(x)| · 1

N
ΓFB
N (F ).

The latter inequality follows because the first-best gains from trade with N buyers and N sellers

cannot be less than pairing up the buyers and sellers a priori and realizing N times of the first-best

gains from trade within each pair.

A.6 Proof of Theorem 2

Theorem 2. For any distribution F with mean absolute deviation bounded below by α > 0, the

optimal fixed-price mechanism achieves at least 1/ (2− 2α) of the first-best gains from trade:

max
p∈R+

Γ(p;F ) = Γ(µ;F ) ≥ 1

2− 2α
ΓFB(F ).

Proof. We solve the following maximization problem:

sup
F∈∆([0,1])

ΓFB(F ) subject to



∫ 1

0

x dF (x) = µ,∫ µ

0

(µ− x) dF (x) = η,∫ 1

0

|µ− x| dF (x) ≥ α.
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By the proof of Theorem 1, Lemmas 1 and 2 apply: we solve the following equivalent

maximization problem, where F ∈ ∆3([0, 1]) has mass only on {0, µ, 1}:

sup
F∈∆3([0,1])

ΓFB(F ) subject to



∫ 1

0

x dF (x) = µ,∫ µ

0

(µ− x) dF (x) = η,∫ 1

0

|µ− x| dF (x) ≥ α.

Consider the relaxed problem in which only the first two constraints bind. Then, as in the proof

of Theorem 1, we have the parametrization

F (x) =
η

µ
· 1x≥0 +

[
1− η

µ (1− µ)

]
· 1x≥µ +

η

1− µ
· 1x≥1,

for which we compute that

Γ(µ;F )

ΓFB(F )
=

1

2− η
µ(1−µ)

.

Now, observe that the inequality constraint is

α ≤
∫ 1

0

|µ− x| dF (x) = η +

∫ 1

µ

(x− µ) dF (x) = 2η.

Since z (1− z) ≤ 1/4 for any z ∈ R, we have

η

µ (1− µ)
≥ 2α =⇒ Γ(µ;F )

ΓFB(F )
=

1

2− η
µ(1−µ)

≥ 1

2− 2α
.

A.7 Proof of Theorem 3

Theorem 3. For any distribution F with mean µ, the maximum welfare loss under the optimal

fixed-price mechanism is:

ΓFB(F )− Γ(µ;F ) ≤ µ (1− µ)

4
≤ 1

16
.
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Moreover, if F has variance σ2 and is continuous, then the maximum welfare loss also satisfies:

ΓFB(F )− Γ(µ;F ) ≤ 1

4
σ2 +

1

8
√

3
.

Proof. In the proof of Theorem 1, we showed that

ΓFB(F ) ≤ 2 Γ(µ;F )− [Γ(µ;F )]2

µ (1− µ)
.

This yields the following expression for welfare loss:

ΓFB(F )− Γ(µ;F ) ≤ Γ(µ;F )− [Γ(µ;F )]2

µ (1− µ)
.

For any η ∈ R+, observe that[
η√

µ (1− µ)
−
√
µ (1− µ)

2

]2

≥ 0 =⇒ η − η2

µ (1− µ)
≤ µ (1− µ)

4
.

Moreover, because z (1− z) ≤ 1/4 for any z ∈ R+, the maximum welfare loss under the optimal

fixed-price mechanism is:

ΓFB(F )− Γ(µ;F ) ≤ µ (1− µ)

4
≤ 1

16
.

Finally, if F has variance σ2 and is continuous, then Theorem 3 of Agarwal et al. (2005) shows

that

µ (1− µ) ≤ σ2 +
1

2
√

3
.

A.8 Proof of Theorem 4

Theorem 4. For any distribution F satisfying Assumption 1, the gains from trade ΓDS,ND(F )

that the optimal dominant-strategy mechanism that also satisfies the ex post no-deficit condition

achieves are bounded below:

ΓDS,ND(F ) ≥

[
1−

√
1− ΓFB(F )

µ (1− µ)

]
µ (1− µ) for any F ∈ ∆([0, 1]) with mean µ.
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Proof. By Theorem 1 of Shao and Zhou (2016), the optimal mechanism must either be a fixed-

price mechanism or an option mechanism with the same price p∗ equal to the mean µ of the

distribution F . Both mechanisms yield the same gains from trade in expectation. Hence we can

restrict attention to only fixed-price mechanisms; Theorem 1 then applies.

A.9 Proof of Proposition 6

Proposition 6. Suppose that ||FS − FB ||∞ ≤ ε, where ε is sufficiently small.Then the worst-case

performance of either agent’s mean, µS or µB, achieves [1/2 + O(ε)] of the first-best gains from

trade: 
Γ(µS;FS, FB) ≥

[
1

2
+O(ε)

]
ΓFB(FS, FB),

Γ(µB;FS, FB) ≥
[

1

2
+O(ε)

]
ΓFB(FS, FB).

Here, Γ(p;FS, FB) denotes the gains from trade realized by the fixed-price mechanism p in

expectation, and ΓFB(FS, FB) denotes the first-best gains from trade.

Proof. Fix FS and FB that satisfy the assumptions. We compute that

Γ(µS;FS, FB) = [1− FB(µS)]

∫ µS

0

FS(x) dx+ FS(µS)

∫ 1

µS

[1− FB(x)] dx

= [1− FS(µS)]

∫ µS

0

FS(x) dx+ FS(µS)

∫ 1

µS

[1− FS(x)] dx

+ [FS(µS)− FB(µS)]

∫ µS

0

FS(x) dx+ FS(µS)

∫ 1

µS

[FS(x)− FB(x)] dx

= Γ(µS;FS, FS) +O(ε).

On the other hand,

ΓFB(FS, FB) =

∫ 1

0

FS(x) [1− FB(x)] dx =

∫ 1

0

FS(x) [1− FS(x)] dx+

∫ 1

0

FS(x) [FS(x)− FB(x)] dx

= ΓFB(FS, FS) +O(ε).

Therefore:
Γ(µS;FS, FB)

ΓFB(FS, FB)
=

Γ(µS;FS, FS) +O(ε)

ΓFB(FS, FS) +O(ε)
≥ 1

2
+O(ε).

An identical argument holds for µB.
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B Online Appendix: Discussion on General Asymmetry

In this Appendix, we consider the model of Section 2, but now relax the requirement that both

agents’ values are drawn from the same distribution. Our main argument is that, when agents

are asymmetric, the Designer can no longer design informationally simple or even approximately

efficient mechanisms under the restriction of fixed-price mechanisms. Therefore, despite the fact

that fixed-price mechanisms may be strategically simple for agents, it may be justified from the

Designer’s perspective to use more complicated mechanisms.

We modify our model as follows. We denote the seller’s distribution by FS and the buyer’s

distribution by FB. We assume that FS, FB ∈ ∆(R+), where FS and FB have finite and nonzero

mean.

Accordingly, we modify the notation used previously. We denote the gains from trade realized

by the fixed-price mechanism p as

Γ(p;FS, FB) := E[(B − S) · 1B>p≥S],

where the expectation is taken over S and B, drawn independently from FS and FB respectively.

Likewise, we denote the first-best gains from trade by

ΓFB(FS, FB) := E[(B − S) · 1B>S].

The main difficulty in extending our main results to the case of generally asymmetric agents

is the following impossibility result, which has been documented by other various other authors

(see, e.g., Blumrosen and Dobzinski, 2016):

Observation. The optimal fixed-price mechanism can achieve an arbitrarily small fraction of

the first-best gains from trade:

inf
FS ,FB∈∆(R+)

sup
p∈R+

Γ(p;FS, FB)

ΓFB(FS, FB)
= 0.

To see why this is allowed in when agent distributions are not identical, we note that asymmetry

can concentrate the joint probability density, conditional on B > S, close to the diagonal B = S, as

shown in Figure 1. However, any fixed-price mechanism can capture only a small fraction of gains

from trade near the diagonal. Thus, in the worst case, even the optimal fixed-price mechanism

can only capture an arbitrary small fraction of the potential gains from trade.
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Figure 1: Joint density concentrated near the diagonal B = S when conditioned on B > S.

There are two approaches to circumvent this impossibility result. First, we can consider the

case where FS and FB are close to each other in the supremum norm. We refer to this case as one

of “limited asymmetry.” This was the approach presented in the extension in Section 5. In this

Appendix, we consider the second approach, which sets a different benchmark than first-best gains

from trade, namely first-best welfare. This benchmark has been used by various papers in the

computer science literature, such as Colini-Baldeschi et al. (2016) and Blumrosen and Dobzinski

(2016).

If we use the first-best welfare as a benchmark instead, then we are able to show strong results,

especially in the case where the Designer knows the seller’s distribution FS but has complete

uncertainty over the buyer’s distribution FB. However, compared to the first-best gains from trade,

the first-best welfare is a less relevant benchmark for many economic purposes. The limitations

of both approaches lead us to conclude that the Designer may well be justified in using more

complicated mechanisms than fixed-price mechanisms when agents can be asymmetric.

We now consider the first-best welfare as our benchmark, instead of first-best gains from trade.

Formally, we consider the agents’ welfare

W(p;FS, FB) := E[S + (B − S) · 1B>p≥S],
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and the first-best welfare

WFB(p;FS, FB) := E[S + (B − S) · 1B>S].

Notably, observe that

W(p;FS, FB)− Γ(p;FS, FB) = WFB(FS, FB)− ΓFB(FS, FB) = E[S].

Blumrosen and Dobzinski (2016) have shown that the optimal fixed-price mechanism p∗ is a

good approximation to first-best welfare. Precisely, they show that

inf
FS ,FB∈∆(R+)

W(p∗;FS, FB)

WFB(FS, FB)
≥ 1− 1

e
, where p∗ ∈ arg max

p∈R+

Γ(p;FS, FB).

Our first result shows that this bound is not tight:

Theorem 6. Given distributions FS and FB, the Designer can always select a price that achieves

at least 1− 1/e+ 0.0001 of the first-best welfare. That is:

inf
FS ,FB∈∆(R+)

sup
p∈R+

W(p;FS, FB)

WFB(FS, FB)
≥ 1− 1

e
+ 0.0001.

Theorem 6 builds on the result by Blumrosen and Dobzinski (2016) as follows. Blumrosen

and Dobzinski (2016) consider a mechanism that always achieves achieves the bound of 1 − 1/e.

Heuristically, our improvement can be achieved as follows:

• If E[(S −B)+] is sufficiently small, then we construct a mechanism that exploits the severe

asymmetry in the agents’ distributions. This achieves a worst-case performance

approximation to first-best welfare that is close to 3/4.

• If E[(S − B)+] is large, then the mechanism of Blumrosen and Dobzinski (2016) already

achieves a worst-case performance approximation that is strictly higher than 1− 1/e.

In our view, an important shortcoming of Theorem 6 is that the mechanism is not

informationally simple with respect to simple statistics of the distribution. In fact, it depends

heavily on distributional knowledge. As a counterpoint to Theorem 6 and motivated by the

mechanism proposed by Blumrosen and Dobzinski (2016), we consider mechanisms that use only

distributional knowledge of the seller’s distribution FS. For this analysis, we assume that the

agents’ distributions are twice continuously differentiable with positive density: FS, FB ∈ F .
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Formally, we restrict the fixed-price mechanism that the Designer chooses to be independent

of the buyer’s distribution FB, so that p(FS, FB) = p(FS). Under this restriction, 1 − 1/e is the

best possible approximation to first-best welfare:

Theorem 7. Given distributions FS and FB, the Designer can achieve no better than 1− 1/e of

the first-best welfare if the price can only depend on FS. That is:

inf
FS ,FB∈F

sup
p(FS)

W(G;FS, FB)

WFB(FS, FB)
= 1− 1

e
.

B.1 Proof of Theorem 6

Theorem 8. Given distributions FS and FB, the Designer can always select a price that achieves

at least 1− 1/e+ 0.0001 of the first-best welfare. That is:

inf
FS ,FB∈∆(R+)

sup
p∈R+

W(p;FS, FB)

WFB(FS, FB)
≥ 1− 1

e
+ 0.0001.

To prove Theorem 6, we consider first the simpler case where there is severe asymmetry between

the agents, that is, when E[(S − B)+] = 0. This is dealt with in Section B.1.1. We show that, in

this case, the Designer can achieve a good approximation to first-best welfare that is close to 0.75.

We then proceed to show, in Section B.1.2, that this holds in general. We combine our results

and give the complete proof of Theorem 6 in Section B.1.3.

B.1.1 Severe asymmetry: E[(S −B)+] = 0

Proposition 7. Given distributions FS and FB that satisfy E[(S − B)+] = 0, the Designer can

always select a price that achieves at least 3/4 of the total expected welfare under the first-best

efficient outcome. That is:

inf
FS ,FB∈∆(R+)
E[(S−B)+]=0

sup
p∈R+

W(p;FS, FB)

WFB(FS, FB)
=

3

4
.

Proof. The result to Proposition 7 follows from Lemma 4, which we prove below.

Lemma 4. Fix α > 0. Given distributions FS and FB that satisfy E[(S−B)+] ≤ α·WFB(FS, FB).

Suppose there exist p+ and p− such that:

(i) P[S > p+] ≤
√

10α;
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(ii) P[B < p−] ≤
√

10α; and

(iii) 0 < p+ − p− ≤
√

10α.

Then the Designer can set the price to be either p+ or p− to achieve an expected welfare of at

least (
3

4
− 2
√

10α

)
·WFB(FS, FB).

Remark. We note that Lemma 4 implies the result of Proposition 7 as follows. Given

distributions FS and FB that satisfy E[(S − B)+] = 0, there exists a price p∗ for which

P[S ≤ p∗] = P[B ≥ p∗] = 1. Fix α > 0. Define
p+ := p∗ +

1

2

√
10α ·WFB(FS, FB),

p− := p∗ − 1

2

√
10α ·WFB(FS, FB).

Observe that P[S > p+] = P[B < p−] = 0 <
√

10α and p+ − p− =
√

10α, so Lemma 5 applies for

any α > 0. The result of Proposition 7 is obtained in the limit as α→ 0.

Proof of Lemma 4. For ease of notation, given a fixed-price mechanism p, denote the welfare loss

relative to first-best efficiency by L(p;FS, FB):

L(p;FS, FB) := WFB(FS, FB)−W(p;FS, FB) = E[(B − S) · 1S<B≤p] + E[(B − S) · 1p<S<B].

We begin by analyzing the welfare loss for p+ and p−. We have:

L(p+;FS, FB) = E[(B − S) · 1S<B≤p+ ] + E[(B − S) · 1p+<S<B]

≤ E[B · 1B<p+1S<p− ] + E[(B − S) · 1p−≤S<B≤p+ ] + E[B · 1p+<B1p+<S],

L(p−;FS, FB) = E[(B − S) · 1S<B≤p− ] + E[(B − S) · 1p−<S<B]

≤ E[B · 1B<p−1S<p− ] + E[(B − S) · 1p−≤S<B≤p+ ] + E[B · 1B≥p+1S≥p− ].

Consider the terms E[B · 1B<p+1S<p− ] and E[B · 1B≥p+1S≥p− ], which could potentially be

large (i.e., close to the value of WFB(FS, FB)). However, they cannot be both large. Indeed, let

β := E[B · 1B<p+ ]/E[B] and σ := P[S < p−]. Because of the independence between B and S,

we can write E[B · 1B<p+1S<p− ] = βσ · E[B] and E[B · 1B>p+1S>p− ] = (1− β)(1− σ) · E[B]. We
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distinguish between two cases: β + σ ≤ 1 or β + σ > 1. In the first case, setting a price p+ yields

E[B · 1B<p+1S<p− ] ≤ βσ · E[B] ≤ 1

4
· E[B] ≤ 1

4
·WFB(FS, FB).

In the second case, setting a price p− yields

E[B · 1B≥p+1S≥p− ] ≤ (1− β)(1− σ) · E[B] ≤ 1

4
· E[B] ≤ 1

4
·WFB(FS, FB).

The remaining terms can be bounded by O(
√
α) ·WFB(FS, FB) as follows:

E[(B − S) · 1p−≤S<B≤p+ ] ≤ p+ − p− ≤
√

10α ·WFB(FS, FB),

E[B · 1p+<B1p+<S] ≤ E[B] · P[p+ < S] ≤
√

10α ·WFB(FS, FB),

E[B · 1B<p−1S<p− ] ≤ E[B] · P[B < p−] ≤
√

10α ·WFB(FS, FB).

Therefore, in either case, the welfare loss is bounded above by
(

1
4

+ 2
√

10α
)
·WFB(FS, FB). Thus

max
p∈{p+, p−}

W(p;FS, FB) ≥
(

3

4
− 2
√

10α

)
·WFB(FS, FB).

We now derive a sufficient condition for the hypotheses of Lemma 4 to hold:

Lemma 5. Fix α > 0. Given distributions FS and FB that satisfy E[(S−B)+] ≤ α·WFB(FS, FB),

suppose there exists p∗ such that

P[S ≥ p∗] >
1

5
and P[B ≤ p∗] >

1

5
.

Define 
p+ := p∗ +

1

2

√
10α ·WFB(FS, FB),

p− := p∗ − 1

2

√
10α ·WFB(FS, FB).

Then P[S ≥ p+] ≤
√

10α and P[B ≤ p−] ≤
√

10α.

Proof. Suppose to the contrary that P[S ≥ p+] >
√

10α. Since P[B ≤ p∗] > 1/5 by definition of
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p∗, we have

E[(S −B)+] ≥ (p+ − p∗) · P[S ≥ p+] · P[B ≤ p∗] > α ·WFB(FS, FB), a contradiction.

Similarly, if P[B ≤ p−] >
√

10α, then since P[S ≥ p∗] > 1/5 by definition of p∗, we have

E[(S −B)+] ≥ (p∗ − p−) · P[S ≥ p∗] · P[B ≤ p−] > α ·WFB(FS, FB), a contradiction.

Therefore, for small α > 0, Lemma 5 guarantees a strict improvement over the 1− 1/e bound

(i.e., that Lemma 4 applies) if there exists p∗ such that

P[S ≥ p∗] >
1

5
and P[B ≤ p∗] >

1

5
.

What if such a p∗ does not exist? The following result ensures that we can still guarantee a strict

improvement over the 1− 1/e bound:

Lemma 6. Given distributions FS and FB, let p∗ := inf{p : P[S ≥ p] ≤ 1/5}. If P[B ≤ p∗] ≤ 1/5,

then

W(p∗;FS, FB) ≥ 17

25
·WFB(FS, FB).

Proof. Define q := P[S ≥ p∗] ≤ 1/5 and r := E[B · 1B≤p∗ ]/E[B]. Observe that

r ≤ P[B ≤ p∗] ≤ 1

5
.

As above, denote the welfare loss relative to first-best efficiency by L(p;FS, FB):

L(p;FS, FB) := WFB(FS, FB)−W(p;FS, FB) = E[(B − S) · 1S<B≤p] + E[(B − S) · 1p<S<B].
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We bound L(p∗;FS, FB) from above as follows:

L(p∗;FS, FB) ≤ E[B · 1B≤p∗1S<p∗ ] + E[B · 1B>p∗1S≥p∗ ]

= r (1− q) · E[B] + (1− r) q · E[B]

=

[
1

2
− 2

(
1

2
− q
)(

1

2
− r
)]

E[B]

≤

[
1

2
− 2

(
1

2
− 1

5

)2
]
E[B] =

8

25
· E[B] ≤ 8

25
·WFB(FS, FB).

Therefore

W(p∗;FS, FB) = WFB(FS, FB)− L(p∗;FS, FB) ≥ 17

25
·WFB(FS, FB).

B.1.2 General asymmetry

For the case where α = E[(B − S)+] is not small, we show for completeness:

Proposition 8 (Blumrosen and Dobzinski, 2016). For any given distributions FS and FB,

sup
p∈R+

W(p;FS, FB)

WFB(FS, FB)
≥ 1− 1

e
+

1

e
· E[(S −B)+].

Proof. The proof is based almost entirely on the proof of Theorem 4.1 in Blumrosen and Dobzinski

(2016). Since the mechanism depends only on the seller’s distribution, we can work with a fixed

buyer’s value and then take an expectation over the buyer at the end. Given FS, we fix b ∈ R+

and consider the truncated seller’s distribution F̃S (replacing all values above b by b):

F̃S(x) = FS(x) · 1x<b + 1x≥b.

We denote by Φb the step function Φb(x) = 1x≥b (corresponding to a deterministic value of b).

For any distribution G that depends only on FS, we note that

Ep∼G[W(p; F̃S,Φb)] = Ep∼G[W(p;FS,Φb)]− P[S > b] · (ES∼FS
[S |S > b]− b) ,

because the last term is exactly the expected value that is lost by modifying the seller’s distribution

to F̃S. (Note that the trade never happens when S > b, so the outcome in this case is always S.)
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By the same argument,

WFB(F̃S,Φb) = WFB(FS,Φb)− P[S > b] · (ES∼FS
[S |S > b]− b) .

Consider the distribution G∗(x) = 1 + logFS(x), where x ∈ [F−1
S (1/e), F−1

S (1)]. Blumrosen and

Dobzinski (2016) show that

Ep∼G∗ [W(p; F̃S,Φb)] ≥
(

1− 1

e

)
·WFB(F̃S,Φb).

Consequently, substitution reveals that

Ep∼G∗ [W(p;FS,Φb)] ≥
(

1− 1

e

)
·WFB(FS,Φb) +

1

e
· P[S > b] · (ES∼FS

[S |S ≥ b]− b)

=

(
1− 1

e

)
·WFB(FS,Φb) +

1

e
· E [(S − b)+] .

Because G∗ depends only on FS, it follows by linearity of expectation that

Ep∼G∗ [W(p;FS, FB)] = Eb∼FB
Ep∼G∗ [W(p;FS,Φb)]

and

WFB(FS, FB) = Eb∼FB
[WFB(FS,Φb)].

Taking expectations in the above yields

Ep∼G∗ [W(p;FS, FB)] ≥
(

1− 1

e

)
·WFB(FS, FB) +

1

e
· E [(S −B)+]

=

(
1− 1− α

e

)
·WFB(FS, FB).

B.1.3 Complete proof of Theorem 6

Proof. Let E[(S −B)+] = α ·WFB. If α ≥ 0.0003, then Proposition 8 yields

sup
p∈R+

W(p;FS, FB)

WFB(FS, FB)
≥ 1− 1

e
+
α

e
> 1− 1

e
+ 0.0001.
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If 0 < α < 0.0003, then consider p∗ := inf{p : P[S ≥ p] ≤ 1/5}. If P[B ≤ p∗] ≤ 1/5, then Lemma 6

yields

sup
p∈R+

W(p;FS, FB)

WFB(FS, FB)
≥ W(p∗;FS, FB)

WFB(FS, FB)
≥ 17

25
.

Otherwise, if P[B ≤ p∗] > 1/5, then there exists some sufficiently small ε > 0 such that p0 = p∗−ε
satisfies P[S ≥ p0] > 1/5 and P[B ≤ p0] > 1/5. Lemma 5 shows that this is a sufficient condition

to satisfy the hypotheses of Lemma 4, which implies:

sup
p∈R+

W(p;FS, FB)

WFB(FS, FB)
≥ 3

4
− 2
√

10α >
16

25
.

Finally, Proposition 7 covers the case of α = 0.

B.2 Proof of Theorem 7

Theorem 9. Given distributions FS and FB, the Designer can achieve no better than 1− 1/e of

the first-best welfare if the price can only depend on FS. That is:

inf
FS ,FB∈F

sup
p(FS)

W(G;FS, FB)

WFB(FS, FB)
= 1− 1

e
.

Before we present a formal proof, let us discuss a game-theoretic intuition behind this result.

We can view the situation as a game between two players, the Designer and Nature. The Designer

tries to select a parameter x (as a quantile of FS) to maximize total welfare, and Nature tries to

select a distribution FS to thwart the Designer’s goal. Given the choice of x and FS, the buyer’s

distribution FB is considered to be worst possible with respect to the Designer’s outcome. Our

goal is to prove that there is a strategy of Nature such that no strategy of the Designer achieves

an approximation factor better than 1− 1/e.

Due to von Neumann’s theorem, there are optimal mixed strategies Ξ and Φ. It is important

to keep in mind that these are randomized strategies: in the case of the Designer, this means a

random choice of x; in the case of Nature, this means a random choice of FS, (i.e., a probability

distribution over cumulative distribution functions FS, which is a more complicated object).

In order to simplify the game, let us make a few observations. Given x, FS and FB, the

expected outcome is given by taking an expectation over the buyer’s value b sampled from FB

(because there is no dependency between b and the choice of the price p and the seller’s value

s). Therefore, we might as well assume that the buyer’s value is deterministic, namely, the worst
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possible value b, given x and FS. Furthermore, for each choice of FS and b, the values can be

rescaled so that b = 1, without affecting the approximation ratio (i.e., the ratio of welfare relative

to first-best efficiency). So we can assume without loss of generality that b = 1. Further, given

that b = 1, the seller’s distribution can be truncated at 1: any probability mass above 1 can be

moved to 1.12 This means that the first-best efficiency has value E[max{b, s}] = 1.

Next, let us consider the strategy of Nature. For a probability distribution FS, if there is

some mass between (0, 1), it only decreases the approximation ratio if we push this probability

mass towards 0 (the outcome possibly decreases, and the optimum is still 1). It is important here

that the probability mass is not concentrated on a single point – relative comparisons between

different possible values should still be non-trivial. However, we can assume for example that the

probability mass below 1 is uniform between [0, ε], with density y/ε. Considering this, the only

important parameter that governs the seller’s distribution is the probability of s between equal to

1, y = P[s < 1].

Hence, the game we are considering has pure strategies x for the Designer and y for Nature.

Randomized strategies are distributions over x and y. Given x, y the payoff function for the

mechanism (ignoring terms proportional to ε) is

V (x, y) = (1− y) + x · 1x<y.

This reflects the fact that with probability 1− y, the seller’s value is 1, in which case the outcome

is certainly 1 (since the buyer’s value is also 1). Otherwise, the seller’s value is close to 0; then the

trade occurs exactly when s < p and p < 1, and the outcome in that case is 1; otherwise close to

0. The event x < y is equivalent to the fact that p < 1, because y = FS(1). Given that x < y, the

probability that s < p is exactly x, because p = F−1
S (x). Therefore, x · 1x<y is the contribution to

the expected outcome in case the seller’s value is below 1.

We now derive the optimal mixed strategies. Let us assume that Nature’s strategy is given

by a probability density function ρ(y). Then for a given (pure) Designer’s strategy x, Nature’s

expected payoff is

E[V (x, y)] = E[(1− y) + x · 1x<y] =

∫ x

0

(1− y)ρ(y) dy +

∫ 1

x

(1− y + x)ρ(y) dy. (‡)

We posit that for an optimal Nature strategy ρ(y), this quantity should be the same for every

12 There is a lemma making this argument in Blumrosen and Dobzinski (2016) but since we are proving the
opposite bound, this lemma is not formally needed here.
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x in the support of the optimal mechanism strategy. If not, then the Designer’s strategy could be

modified to achieve a better outcome, by picking the x maximizing the quantity above. We are

trying to prove that the Designer’s strategy is defined by g(x) = 1/x for x ∈ [1/e, 1]. Hence, let

us assume that the quantity in (‡) is constant for x ∈ [1/e, 1]. By differentiating (‡) with respect

to x, we obtain (for x ∈ [1/e, 1]), ∫ 1

x

ρ(y) dy − x ρ(x) = 0.

Note that for x = 1− ε, we obtain∫ 1

1−ε
ρ(y) dy = (1− ε) ρ(1− ε).

This is a somewhat paradoxical conclusion. What this actually means is that the probability

distribution cannot be fully defined by a density function; there must be a discrete probability

mass at x = 1, which is equal to the density just below 1.13 Differentiating one more time, we get

−2ρ(x)− x ρ′(x) = 0.

This differential equation is easy to solve: the solution is ρ(y) = C/y2 for y ∈ (1/e, 1). There

should also be a discrete probability mass at y = 1 equal to C. The normalization condition

implies that C = 1/e. To complete the proof, we just have to show that there is no strategy of

the Designer that achieves a factor better than 1− 1/e against this strategy of Nature.

Proof. Motivated by the discussion above, we consider the following strategy of Nature:

• With probability 1/e, set y = 1.

• With probability 1− 1/e, sample y ∈ [1/e, 1] with density ρ(y) = 1/(ey2).

Given y, Nature’s value s is distributed as follows:

• With probability y, s ∈ [0, ε] uniformly at random.

• With probability 1− y, s = 1.

13 These arguments are not rigorous, but in any case we are just trying to guess the optimal form of Nature’s
strategy.
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We claim that for any strategy of the Designer, the approximation ratio is at most 1−1/e against

this Nature’s strategy. Since mixed strategies are convex combinations of pure strategies, it is

enough to consider pure strategies x ∈ [0, 1].

As we argued above, given x and y, the expected value of the game, up to O(ε) terms, is

V (x, y) = (1− y) + x · 1x<y.

We have the following cases:

• x ∈ [0, 1/e]. In this range, we certainly have x < y (because y is always at least 1/e). Thus,

V (x, y) = 1− y + x. In expectation over y, this quantity is

E[V (x, y)] = E[1− y + x] =

∫ 1

1/e

(1− y + x) · 1

ey2
dy +

1

e
· x

=

[
−1 + x

ey
− 1

e
ln y

]1

y=1/e

+
1

e
· x = 1− 2

e
+ x.

Since x ≤ 1/e, we have E[V (x, y)] ≤ 1− 1/e.

• x ∈ [1/e, 1). In this range, we have y ≤ x or y > x depending of the value of y. In the first

case, the value of the game is 1− y and in the second case it is 1− y+ x. Thus we compute

the expected value as follows:

E[V (x, y)] =

∫ 1

1/e

(1− y) · 1

ey2
dy +

∫ 1

x

x · 1

ey2
dy +

1

e
· x

=

[
− 1

ey
− 1

e
ln y

]1

y=1/e

+

[
− x

ey

]1

y=x

+
1

e
· x

=

(
1− 2

e

)
+

(
1

e
− x

e

)
+
x

e
= 1− 1

e
.

• x = 1. Then we get the same expressions as above, except for the term 1
e
· x, since the case

of y = 1 does not contribute anything. Therefore, again the value is at most 1− 1/e.

We conclude that there no strategy of the Designer that achieves an expected welfare of more

than 1 − 1/e (neglecting O(ε) terms). The first-best efficiency is 1 (since the buyer’s value is

always 1) and hence the approximation factor cannot be better than 1− 1/e.
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