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Abstract

This paper studies the regulation of a good that generates different amounts of an externality

on consumption. Direct taxation of the externality is assumed to be infeasible; instead, the

good itself is taxed to indirectly regulate the externality. I show that the deadweight loss due

to any nonlinear tax on the good is equal to the Bregman divergence between the allocation

that the tax induces and the first-best allocation. This yields a regression-based method to

derive the deadweight loss-minimizing tax. I use this method to show that quantity controls,

such as bans and mandates, can be optimal. I quantify the welfare gains of using a nonlinear

tax over a linear tax. Finally, I illustrate policy implications by applying my results to the

taxation of vehicle miles traveled to regulate automobile externalities.
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1 Introduction

Policymakers often use quantity controls to regulate goods that cause externalities. For example,

the recreational use of some psychoactive drugs, such as opiates and opioids, is widely banned,

while immunizations are frequently mandated by schools and employers. Even if outright bans and

mandates are not used, quantity restrictions may still apply. Most countries impose compulsory

education laws that require children to receive some minimum amount of schooling. One-gun-a-

month laws and the Combat Methamphetamine Epidemic Act respectively limit the quantity of

firearms and pseudoephedrine any individual can purchase every month.

These policies illustrate how the first-best approach of Pigouvian taxation may not always be

practically feasible. In theory, policymakers can ideally induce individuals to internalize the true

social impact of their consumption by taxing each individual the marginal external harm that he

generates, which restores market efficiency. But in practice, the externality that is generated by

recreational drug use, for instance, varies across individuals and is difficult to measure accurately.

When policymakers cannot accurately measure (and directly regulate) the externality that each

individual causes, they indirectly regulate the externality by regulating the good instead—such as

through quantity controls. Unlike a Pigouvian tax, however, indirect regulation cannot distinguish

between those who generate little social harm and those who generate substantial social harm: all

individuals are subject to the same restrictions. Consequently, any indirect regulation introduces

deadweight loss. How much deadweight loss does each type of indirect regulation introduce, and

what is the indirect regulation that minimizes deadweight loss?

In this paper, I characterize the optimal indirect regulation by developing a method to quantify

the deadweight loss of any indirect regulation. Motivated by the classical Pigouvian analysis, I

study a large market in which consumers demand different amounts of a homogeneous good, the

consumption of which generates an externality. Unlike the classical Pigouvian analysis, however, I

assume that consumers may generate different amounts of externality per unit of good consumed,

which the social planner does not observe. As such, the social planner is no longer able to

directly regulate the externality. Instead, to indirectly regulate the externality, she chooses a price

schedule for the good that might not be linear in the quantity of good consumed. For example, she

could impose a linear tax on the good, introduce a quantity ceiling, or even ban the good entirely.

Because indirect regulation does not distinguish between those who generate high and low amounts

of the externality, it distorts away from the first-best allocation and results in deadweight loss.

The social planner’s objective is to minimize deadweight loss.
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Figure 1: Deadweight loss for an individual consumer.

To illustrate my approach, I begin by considering a special case where each individual consumer

has a linear demand curve, as shown in Figure 1(a). The first-best allocation, qFB, for a consumer

is where his demand curve (D) meets his social marginal cost curve (SMC). At any other allocation

q, a deadweight loss arises. The assumption of linear demand simplifies the characterization of

deadweight loss and the derivation of the optimal indirect regulation.

In this special case, observe that the total deadweight loss induced by any indirect regulation is

equal to a weighted sum of squared distances between the first-best allocation and the allocation

under the indirect regulation in question. Indeed, as Harberger (1964) observed, the deadweight

loss for an individual consumer is equal to the area of the shaded triangle in Figure 1(a), which is

in turn proportional to the squared distance between qFB and q. The total deadweight loss is thus

simply a sum of squared distances between the first-best allocation and the allocation under the

indirect regulation, weighted appropriately to account for how demand and social marginal cost

curves differ across consumers.

This observation implies that finding the deadweight loss-minimizing regulation in any set of

indirect regulations is equivalent to performing a weighted least squares regression. For example,

the optimal linear tax can be derived by regressing the externality that each consumer generates per

unit of good consumed onto a constant function, which can be computed by applying a standard

regression projection formula. More complex nonlinear taxes might require more parameters to be

estimated; and the optimal nonlinear tax can be derived by estimating a nonparametric regression.

I thus derive the optimal indirect regulation by characterizing the projection formula associated

with this nonparametric regression.
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Although the assumption of linear demand might appear to play a critical role in this approach,

perhaps surprisingly, I show that it does not. In fact, all that is required to generalize this approach

beyond linear demand is to employ more general regression loss functions than the weighted sum

of squared distances. My first main result, as illustrated in Figure 1(b), shows that the deadweight

loss of any indirect regulation is more generally equal to a weighted sum of Bregman divergences

between the first-best allocation and the allocation under the indirect regulation in question. This

implies that the optimal allocation—within any set of allocation functions—can be derived by

estimating a nonparametric regression of the first-best allocation on that set, where the regression

loss function is a weighted sum of Bregman divergences. My second main result derives the optimal

indirect regulation by characterizing the projection operator associated with this nonparametric

regression within the set of all implementable allocation functions.

Using these results, I show that the optimal indirect regulation can involve quantity controls.

For instance, suppose that individuals who have the greatest marginal consumption benefit for guns

also impose the greatest marginal external harm in expectation. If the external harm that they

impose could be directly observed, then only those whose Pigouvian tax exceeds their marginal

consumption benefit would be effectively banned from buying guns. However, as the external harm

that they impose cannot be directly observed, the policymaker cannot distinguish these individuals

from others. When the marginal external harm that these individuals impose is sufficiently high,

then the optimal indirect regulation bans all individuals from buying guns. My results allow me

to establish a necessary and sufficient condition for the optimal regulation to be a ban. When the

marginal external harm that these individuals impose is not as high, then the optimal indirect

regulation might nonetheless set a quantity ceiling on guns to restrict the total external harm

that they can impose. In this case, I establish a necessary and sufficient condition for the optimal

regulation to include a quantity ceiling. Finally, I show that mandates and quantity floors can be

similarly optimal when consumption generates a positive, rather than negative, externality.

In addition to characterizing the optimal indirect regulation, my regression-based approach also

uncovers new insights about implementation and welfare. First, I show that the social planner’s

problem can be analogously solved by performing a regression in prices rather than quantities. In

particular, the classic formula of the optimal indirect linear tax due to Diamond (1973) can be

interpreted as an “estimator” of the social marginal cost in the family of constant marginal taxes.

By analogy, the estimators of the social marginal cost in broader families of taxes implement

optimal regulations in those families, and I derive the tax that implements the optimal indirect

regulation. Second, I show that applying the law of total variance to the regression loss function

allows the deadweight loss to be decomposed into two economically meaningful components. In
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particular, I show that the deadweight loss due to the optimal linear tax is equal to the variance of

the externality, while the deadweight loss due to the optimal nonlinear tax is equal to the variance

of the externality unexplained by consumption. As such, the welfare gain from using the optimal

nonlinear tax over the optimal linear tax is equal to the variance of the externality explained by

consumption.

The results of this paper provide a simple takeaway for empirical applications: optimal indirect

regulations can be derived via a regression approach. To illustrate, I apply my results to the

problem of taxing vehicle miles traveled (VMT) to indirectly regulate automobile externalities.

This is motivated by recent policy interest in VMT taxation worldwide.1 On one hand, recent

advancements in telematics technology enable policymakers to measure (and hence tax) cumulative

VMT. Consequently, policymakers can potentially design taxes that vary nonlinearly in VMT,

unlike gas taxes, which are constrained to vary linearly in gas consumption because policymakers

cannot measure cumulative gas consumption. On the other hand, the growing number of electric

vehicles will eventually render gas taxes ineffective at controlling automobile externalities because

electric vehicles are not exposed to gas taxes. To examine how a VMT tax can be used to indirectly

regulate automobile externalities, I apply my results to the empirical setting of Knittel and Sandler

(2018) that focuses on the regulation of pollutant emissions. Given Knittel and Sandler’s estimates

of the demand for VMT and the distribution of pollutant emissions produced per gallon, I show

that the optimal indirect regulation sets a decreasing marginal tax rate on gasoline, which performs

9.5% (or $2.5M annually) better than the optimal linear VMT tax over the sample period.

This paper contributes to the literature on the indirect regulation of externalities by applying

tools from mechanism design to derive the optimal nonlinear indirect regulation.2 The seminal

work of Diamond (1973) characterized the optimal linear indirect tax, which has been the focus

of the subsequent literature, which includes recent empirical work by Knittel and Sandler (2018),

Griffith, O’Connell, and Smith (2019), and Grummon, Lockwood, Taubinsky, and Allcott (2019).3

However, as explained previously, quantity controls are often used in practice to indirectly regulate

1 In the U.S., the Bipartisan Infrastructure Bill includes a $125 million pilot study for a VMT tax. Other countries,
such as Austria, Belgium, Germany, Russia, Switzerland, and the United Kingdom, are either considering or have
already implemented some form of a VMT tax.

2 There is an older literature in public finance that studies how direct taxes on externalities interact with nonlinear
income taxes (e.g., Sandmo, 1975; Ng, 1980; Bovenberg and van der Ploeg, 1994; Cremer, Gahvari, and Ladoux,
1998; Kopczuk, 2003; Kaplow, 2012). In these contexts, the optimality of nonlinear income taxation arises
from asymmetric information about either abatement costs or individual wage rates and tastes, rather than the
inability to tax the externality.

3 In the literature on law and economics, Fleischer (2015) qualitatively discusses the limitations of using a linear
tax on goods to indirectly regulate externalities.

4



externalities; and technological advancements (such as in the case of VMT taxation) have made

cumulative—and hence nonlinear—taxation feasible. These observations motivate a more general

analysis of indirect regulations, which this paper provides.

This paper also contributes to a broader research agenda that aims to understand why non-

market regulations—such as quantity controls—are used in practice. Non-market regulations have

been shown to justified when policymakers have uncertainty about abatement costs (Weitzman,

1974; Roberts and Spence, 1976; Kaplow and Shavell, 2002), redistributive concerns (Condorelli,

2013; Dworczak R○ Kominers R○ Akbarpour, 2021; Akbarpour R○ Dworczak R○ Kominers, 2022;

Pai and Strack, 2022), differential enforcement costs (Glaeser and Shleifer, 2001), and concerns

about equilibrium effects (Kang, 2023). This paper contributes to this literature by showing when

quantity controls can be justified due to the inability to observe and directly tax the externality.

Finally, the regression approach developed in this paper relates to methods for policy evaluation

in the sufficient statistics literature and ironing techniques in the mechanism design literature. On

one hand, my analysis is closest to that of Jacobsen, Knittel, Sallee, and van Benthem (2020), who

build on the pioneering work of Harberger (1964) to show how regression statistics can be used to

measure deadweight loss in indirect policies. While Jacobsen et al. focus on linear taxation in the

case of linear demand, I show that a regression approach nonetheless applies to nonlinear taxation

in the case of general demand. More generally, while sufficient statistics approaches apply only

to marginal policy changes, the regression approach developed in this paper applies even to non-

marginal policy changes—such as quantity controls. On the other hand, my characterization of the

regression projection operator also complements ironing techniques in mechanism design, such as

those developed by Toikka (2011). While it is possible to alternatively derive the optimal allocation

function with Toikka’s ironing techniques, my regression approach shows how the resulting optimal

allocation function can be interpreted as the projection of the first-best allocation function. I also

demonstrate how the regression approach facilitates additional insights on implementation and

welfare—through a regression in prices and an analysis of variance respectively—and connects the

mechanism design problem to empirical applications.

The remainder of this paper is organized as follows. In Section 2, I develop a model of indirect

regulation. Section 3 then illustrates the regression approach and builds intuition for the general

analysis by considering a special case where consumers have linear demand. The general analysis

and theoretical results are provided in Section 4; and the economic implications of my results

on implementation, welfare, and the optimality of quantity controls are discussed in Section 5. I

apply the regression approach to the empirical problem of VMT taxation in Section 6 and discuss

extensions in Section 7. Finally, Section 8 concludes.
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2 Model

In this section, I develop a model in which consumers generate different amounts of an externality

from consuming a good. I then analyze the first-best benchmark and formulate the social planner’s

problem of indirectly regulating the externality by regulating the good.

2.1 Setup

There is a unit mass of risk-neutral consumers in a market for a homogeneous good. Consumption

of the good generates an externality. Consumers differ in both their consumption preferences and

how much externality they generate from consumption. The good is supplied competitively at a

constant marginal cost c > 0, and each consumer demands up to A > 0 units of the good.

Heterogeneity in consumption preferences is captured by a consumption type θ ∈ [θ, θ] ⊂ R+

about which the consumer is privately informed. This determines the utility θv(q) that he derives

from consuming a quantity q of the good, where v : [0, A] → R+ is bounded, twice continuously

differentiable, and satisfies standard assumptions of strict monotonicity and decreasing marginal

utility: v′(q) > 0 and v′′(q) < 0 for any q ∈ [0, A]. Each consumer’s individual demand curve

D(· ; θ) : R → [0, A] can thus be written as

D(p; θ) = (v′)−1
(p
θ

)
.

Heterogeneity in externality generated is captured by an externality type ξ ∈ [ξ, ξ] ⊂ R. This is
the marginal externality (measured in dollar terms) that the consumer generates per unit of good

consumed.4 I assume that consumers are also privately informed about ξ; all results are identical

if consumers do not know their own externality types (see Lemma 1 below). The joint distribution

of (θ, ξ) is G, which is absolutely continuous and has a positive density function g on [θ, θ]× [ξ, ξ].

Each consumer’s utility depends on both his own consumption of the good and the aggregate

externality generated by all consumers. Following standard textbook analyses, I focus on the case

where utility is additively separable in the aggregate externality.5 Thus, if a consumer with type

(θ, ξ) consumes a quantity q(θ, ξ) of the good and makes a payment of t(θ, ξ), then he realizes a

utility of

θv(q(θ, ξ))− t(θ, ξ)− E, where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

4 Section 7.1 discusses the case when the generated externality is nonlinear in the amount of good consumed.
5 Section 7.1 also discusses the case when the utility is not additively separable in the aggregate externality.
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For simplicity, I assume throughout the paper that ξ ≥ 0 unless otherwise stated. This allows me to

interpret the externality as a negative externality. All results extend easily to positive externalities

by allowing ξ < 0 (and in fact different consumers can generate externalities of different signs).

2.2 First-best benchmark

To understand the first-best benchmark, suppose that the externality that each consumer generates

from consumption can be measured and directly regulated. Following the analysis of Pigou (1920),

the first-best outcome is attained by setting a personalized Pigouvian tax equal to ξ per unit of

good consumed. Consequently, I define the first-best allocation function qFB : [θ, θ]× [ξ, ξ] → [0, A]

by

qFB(θ, ξ) = D(c+ ξ; θ).

However, the first-best benchmark may not be attainable in practice. As argued in Section 1,

policymakers often cannot measure and directly regulate the externality because of technological

challenges. When direct regulation of the externality is infeasible, the externality can at best be

indirectly regulated by regulating the good instead.

2.3 Social planner’s problem

I now formulate the social planner’s problem of indirectly regulating the externality by regulating

the good. To regulate the good, the social planner chooses a mechanism (q, t), which consists of

an allocation function q : [θ, θ]× [ξ, ξ] → [0, A] and a payment function t : [θ, θ]× [ξ, ξ] → R. These
respectively determine the quantity of the good that each consumer consumes and the payment

that he makes to the social planner.

I proceed by first characterizing the set of implementable allocation functions and then stating

the social planner’s objective.

Implementable allocation functions. By the revelation principle, it is without any loss of

generality for the social planner to consider only mechanisms under which consumers report their

consumption and externality types truthfully. Formally, the social planner restricts attention to

mechanisms (q, t) that satisfies the following incentive compatibility constraint:

for any (θ, ξ), (θ, ξ) ∈ argmax
(θ̂,ξ̂)

[
θv(q(θ̂, ξ̂))− t(θ̂, ξ̂)−

∫ θ

θ

∫ ξ

ξ

ξ′q(θ′, ξ′) dG(θ′, ξ′)

]
. (IC)
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Notice that, because of the large market assumption, individual reports (θ̂, ξ̂) do not affect the

aggregate externality in the market; hence (as in the standard Pigouvian analysis) each consumer

fails to internalize how much his own consumption affects others.

Next, I characterize the set of allocation functions that the social planner considers. Following

the mechanism design literature, I call an allocation function q implementable if there exists a

payment function t : [θ, θ]× [ξ, ξ] → R such that the mechanism (q, t) satisfies (IC). The following

lemma characterizes the set of implementable allocation functions:

Lemma 1. Define

Q :=
{
q : [θ, θ] → [0, A] is non-decreasing

}
.

Then an allocation function q is implementable only if there exists q̂ ∈ Q such that q(θ, ξ) = q̂(θ)

for almost every (θ, ξ) ∈ [θ, θ]× [ξ, ξ].

Lemma 1 shows that the formulation—and thus solution—of the social planner’s problem does

not depend on whether consumers observe their externality types. If consumers do not observe ξ,

then the social planner can clearly do no better than to elicit only information about θ. However,

even if consumers observe ξ, Lemma 1 shows that the social planner can also do no better than to

elicit only information about θ: any implementable allocation function must be independent of ξ

for almost every consumer. Henceforth, I refer toQ defined in Lemma 1 as the set of implementable

allocation functions; I also write q and t in any incentive-compatible mechanism as functions of

only θ.

While Lemma 1 is formally proven in Appendix A, its underlying intuition is straightforward:

consumption choices are determined entirely by consumption types θ, rather than externality types

ξ. This can be seen from (IC): although consumers can report ξ, their reports do not directly affect

their payoffs. Consequently, no incentive-compatible mechanism can truthfully elicit information

about ξ; instead, the social planner must form beliefs about ξ based on only consumers’ revealed

consumption preferences.6 Given that incentive-compatible mechanisms can truthfully elicit only

information about θ, implementable allocation functions must be non-decreasing in θ due to an

adaptation of Myerson’s (1981) lemma to the present setting.

6 A similar intuition underlies analogous characterization results in the mechanism design literature, such as those
by Jehiel and Moldovanu (2001), Che, Dessein, and Kartik (2013), and Dworczak R○ al. (2021).
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Social planner’s objective. The social planner is utilitarian and aims to maximize total social

surplus. Under any incentive-compatible mechanism (q, t), total social surplus can be written as

∫ θ

θ

∫ ξ

ξ

[θv(q(θ))− (c+ ξ) q(θ)] dG(θ, ξ).

Notice that total social surplus does not directly depend on the payment function t as cash transfers

between consumers and the social planner are welfare-neutral. Equivalently, the payments that

the social planner receives are “recycled” and distributed evenly among consumers.7

The social planner’s problem can be equivalently formulated as one of minimizing deadweight

loss. Under any incentive-compatible mechanism (q, t), deadweight loss is equal to the difference

between the total social surplus under the first-best allocation function qFB and the total social

surplus under the allocation function q:

DWL =

∫ θ

θ

∫ ξ

ξ

{
θ
[
v(qFB(θ, ξ))− v(q(θ))

]
− (c+ ξ)

[
qFB(θ, ξ)− q(θ)

]}
dG(θ, ξ).

To solve for the optimal mechanism, the social planner thus chooses an implementable allocation

function q ∈ Q to minimize the above expression. Henceforth, I use this formulation of the social

planner’s problem instead so as to facilitate stating my results, which characterize and minimize

deadweight loss to derive the optimal mechanism via a regression approach.

3 Illustration of approach

I now illustrate how regression can be used to measure the deadweight loss of any mechanism and

derive the optimal mechanism. To this end, I consider the following special case in this section

and defer the analysis of the general case to Section 4:

Assumption 1. Consumers have quadratic utility given by v(q) = Aq− q2/2 for q ∈ [0, A], where

all consumers derive sufficiently high marginal utility for the initial unit of the good: θA > c+ ξ.

Under Assumption 1, all consumers have linear demand curves and consume a positive amount

of the good under the first-best benchmark. In particular, consumers’ individual demand curves

are given by

D(p; θ) = A− p

θ
.

7 Section 7.2 discusses revenue and distributional concerns.
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Because of the condition on consumers’ marginal utility for the initial unit of the good, this implies

that the first-best allocation function is positive for all consumers:

qFB(θ, ξ) = D(c+ ξ; θ) = A− c+ ξ

θ
> 0 for any (θ, ξ) ∈ [θ, θ]× [ξ, ξ].

The purpose of Assumption 1 is twofold. On one hand, it simplifies the problem and builds

intuition for the general analysis in Section 4. On the other hand, it also serves as an approximation

in the spirit of Harberger (1964) and connects my approach to the sufficient statistics literature.

3.1 Deadweight loss

I begin by showing how deadweight loss is equal to a weighted sum of the squared distances

between the first-best allocation function and the allocation function of a given mechanism.

Proposition 1. Under Assumption 1, the deadweight loss due to any mechanism (q, t) is equal to

half of the average squared distance between the allocation function q and the first-best allocation

function qFB, weighted by consumption types θ:

DWL =

∫ θ

θ

∫ ξ

ξ

θ

2

[
qFB(θ, ξ)− q(θ)

]2
dG(θ, ξ).

qFB(θ, ξ)

θ
[
A− qFB(θ, ξ)

]

θ [A− q(θ)]

= c+ ξ

q(θ)

θA

A

SMC

0
quantity

price

Figure 2: Deadweight loss due to a mechanism (q, t) for an individual consumer.
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The expression for deadweight loss in Proposition 1 follows straightforwardly from the familiar

analysis of Harberger triangles. Indeed, for a consumer with consumption type θ and externality

type ξ, the deadweight loss of consuming q(θ) units of the good is equal to the area of the shaded

triangle in Figure 2:

DWL(θ, ξ) =
1

2
×
[
qFB(θ, ξ)− q(θ)

]
× θ

[
qFB(θ, ξ)− q(θ)

]
=
θ

2

[
qFB(θ, ξ)− q(θ)

]2
.

By summing this over all consumers, the expression for deadweight loss in Proposition 1 can thus

be obtained.

Despite its simplicity, Proposition 1 uncovers the following key relationship between deadweight

loss and regression:

Corollary 1. Under Assumption 1, the allocation function that minimizes deadweight loss within

any set of implementable allocation functions is equal to the weighted least squares projection (with

weights equal to θ) of the first-best allocation function qFB onto that set.

Corollary 1 shows that minimizing deadweight loss within any set of implementable allocation

functions is equivalent to performing a weighted least squares regression. To see why, consider a

set S ⊂ Q of allocation functions and a weighted least squares regression of the first-best allocation

function qFB onto allocation functions in S, with weights equal to consumption types θ:

qFB(θ, ξ) = q(θ) + ε(θ, ξ), q ∈ S.

The weighted sum of squared residuals of this weighted least squares regression is

SSR =

∫ θ

θ

∫ ξ

ξ

θ [ε(θ, ξ)]2 dG(θ, ξ)

=

∫ θ

θ

∫ ξ

ξ

θ
[
qFB(θ, ξ)− q(θ)

]2
dG(θ, ξ) = 2×DWL .

Therefore, the solution to the above weighted least squares regression simultaneously minimizes

both the weighted sum of squared residuals and deadweight loss over all allocation functions in S.
In analogy with linear regression problems, this weighted least squares regression problem

can be solved by applying an appropriate projection operator to the first-best allocation function

qFB. In a linear regression, the best-fit parameters are obtained by projecting the data onto the

linear subspace spanned by the covariates; thus the solution to a linear regression problem can be
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found by applying a projection matrix to the data. Corollary 1 shows that the optimal allocation

function within any set of implementable allocation functions can similarly be found by projecting

qFB onto that set.

Corollary 1 can therfore be used to find the optimal allocation within any set of implementable

allocation functions. As a first illustration, consider the problem of finding the optimal linear (i.e.,

constant marginal) tax, as in Diamond (1973). The optimal linear tax can be found by minimizing

the deadweight loss over the set of all allocation functions that can be implemented by a linear

tax τ ,

S =

{
q : [θ, θ] → [0, A] such that q(θ) = A− c+ τ

θ
for some τ ∈ R

}
.

By Corollary 1, the optimal linear tax can be determined via the weighted least squares projection

of qFB onto S:

A− c+ ξ

θ︸ ︷︷ ︸
=qFB(θ,ξ)

= A− c+ τ

θ
+ ε(θ, ξ), τ ∈ R.

Equivalently, the optimal linear tax can be derived by regressing the amounts of externality that

consumers generate onto the set of constant functions:

ξ = τ − θ · ε(θ, ξ), τ ∈ R.

Using the textbook formula for the regression coefficient for such a linear regression (e.g., Exercise

5 in Section 3.7 of James, Witten, Hastie, and Tibshirani, 2021), the optimal linear tax is

τ ∗ =
E [ξ/θ]

E [1/θ]
.

This illustration thus recovers the familiar result of Diamond (1973) for the case of linear demand:

the optimal linear tax on the good is equal to the weighted average of the marginal harm imposed

by each consumer, where the weights are given by the slopes of consumers’ individual demand

curves, 1/θ.

3.2 Second-best allocation

I now show how Corollary 1 can be used to derive the optimal implementable allocation function,

which I refer to as the second-best allocation function, qSB.
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I begin by using the result of Proposition 1 to rewrite the social planner’s problem of minimizing

deadweight loss as a regression problem. To this end, observe that qSB solves

min
q∈Q

∫ θ

θ

∫ ξ

ξ

θ

2

[
qFB(θ, ξ)− q(θ)

]2
dG(θ, ξ).

By the discussion following Corollary 1, this can be viewed as a weighted least squares regression

problem: the social planner chooses an implementable allocation function q ∈ Q that minimizes

the weighted sum of squared distances to the first-best allocation function qFB. Therefore, to solve

this regression problem, it suffices to characterize the associated projection operator.

I now characterize the projection operator associated with this regression. To this end, let

the concave closure of a function ϕ be defined as the pointwise smallest concave function that lies

above ϕ, and denote the concave closure of ϕ by coϕ. The following lemma provides the desired

characterization:

Lemma 2. Let q0 : [θ, θ] → R and w : [θ, θ] → R++ be two functions. Denote W (θ) :=
∫ θ

θ
w(z) dz

and suppose that W (θ) = 1. Then there exists a unique solution (up to equality almost everywhere)

to the problem

min
q∈Q

∫ θ

θ

[q0(θ)− q(θ)]2w(θ) dθ.

Moreover, the unique solution is given by

q∗(θ) =


0 if q0(θ) ≤ 0,

A if q0(θ) ≥ A,

q0(θ) otherwise,

where q0(θ) :=
d

ds

(
co

∫ θ

W−1(s)

q0(z)w(z) dz

)∣∣∣∣∣
s=W (θ)

.

The proof of Lemma 2 is deferred to Appendix A due to its technical nature. Instead, I explain

the content of Lemma 2 below in three parts.

First, Lemma 2 shows that there is a unique implementable allocation function that is closest

to the any given function q0 (in the sense of weighted sum of squared distances), which allows the

projection operator to be well-defined. On one hand, existence follows straightforwardly from the

fact that the objective functional is continuous in q and that the set Q is closed. On the other

hand, uniqueness follows from the fact that the objective functional is strictly convex in q: if there

were two allocation functions in Q that minimized the objective functional, then their arithmetic

average would attain an even lower value, leading to a contradiction. These observations imply
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Figure 3: Projection of a given function q0 characterized by Lemma 2.

that there is a unique allocation function q∗ ∈ Q that is closest to the given function q0; thus q
∗

is the projection of q0 onto Q.

Second, Lemma 2 shows that the projection of a given function q0 onto Q requires ironing the

function if it is not already non-decreasing. Indeed, if q0 is already non-decreasing, then

co

∫ θ

W−1(s)

q0(z)w(z) dz =

∫ θ

W−1(s)

q0(z)w(z) dz =⇒ q0(θ) = q0(θ).

However, if q0 is not already non-decreasing, then it must be ironed by leveling non-monotone

regions via a weighted equal-areas condition, as illustrated in Figure 3. More precisely, in each

ironing interval, the ironed function q0 must be constant such that the integrals of q0(θ) and q0(θ),

each weighted by w(θ), are equal. Outside of these ironing intervals (where q0 is non-decreasing),

q0 and q0 must coincide.

Third, Lemma 2 shows that the resulting ironed function q0 might still require truncation if

it results in infeasible allocations of the good. As illustrated in Figure 3, the image of q0, and

hence the image of q0, can lie outside of the feasible interval [0, A]. To obtain an implementable

allocation function in Q, the ironed function q0 must be truncated below 0 and above A, so that

all consumption types consume a feasible allocation of the good.
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Finally, I solve the social planner’s regression problem by applying the projection operator

characterized in Lemma 2. To this end, let q0 and w in the statement of Lemma 2 be defined by

q0(θ) =

∫ ξ

ξ

qFB(θ, ξ)g(θ, ξ) dξ and w(θ) =
θ

E[θ]

∫ ξ

ξ

g(θ, ξ) dξ.

Moreover, Assumption 1 implies that the first-best allocation function is feasible for all consumers

since the image of qFB is interior: im qFB ∈ (0, A). This means that only ironing might be required

under Assumption 1; truncation is not. The following proposition summarizes this discussion:

Proposition 2. Let W be the absolutely continuous distribution with positive density w on the

interval [θ, θ] defined by

w(θ) =
θ

E[θ]

∫ ξ

ξ

g(θ, ξ) dξ and W (θ) =
1

E[θ]

∫ θ

θ

∫ ξ

ξ

zg(z, ξ) dξ dz.

Under Assumption 1, the second-best allocation function qSB is unique and equal to

qSB(θ) =
d

ds

(
co

∫ 1

s

E
[
qFB(θ̂, ξ) | θ̂ = W−1(z)

]
dz

)∣∣∣∣
s=W (θ)

.

4 Theoretical results

Although the insights derived in the previous section rely on the assumption of linear demand, I

now show in this section how they extend to the general model.

4.1 Deadweight loss

I begin by demonstrating how the connection between deadweight loss and regression nonetheless

extends to the general model. To this end, I show that deadweight loss is equal to a weighted

sum of Bregman divergences associated with −v between the first-best allocation function and

the allocation function of a given mechanism, rather than a weighted sum of squared distances

under the assumption of linear demand (cf. Assumption 1). Recall that the generalized Bregman

divergence ∆Φ associated with a strictly convex function Φ : Ω → R defined on a closed convex

domain Ω ⊂ R with a selection of subgradients ϕ ∈ ∂Φ is given by

∆Φ(q1, q2) = Φ(q1)− Φ(q2)− (q1 − q2)ϕ(q2) for q1, q2 ∈ Ω.
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Figure 4: Bregman divergence as a measure of deadweight loss.

As Figure 4(a) shows, the Bregman divergence ∆Φ(q1, q2) measures the difference between Φ(q1)

and its approximation with a first-order Taylor expansion around q2.

Below, I consider the following Bregman divergence associated with the strictly convex function

−v : [0, A] → R for a consumer of type (θ, ξ):

∆
(θ,ξ)
−v (q1, q2) := v(q2)− v(q1)− (q1 − q2)ϕ

(θ,ξ)(q2), where ϕ(θ,ξ)(q) =

−v′(q) for q ∈ (0, A),

−c+ ξ

θ
for q = 0 or A.

Henceforth, I refer to ∆
(θ,ξ)
−v as the Bregman divergence (without qualification) since no confusion

should arise. The above construction of the Bregman divergence ensures that the subgradient

function ϕ(θ,ξ) always satisfies

−θϕ(θ,ξ)(qFB(θ, ξ)) = c+ ξ. (1)

Indeed, when qFB(θ, ξ) ∈ (0, A) is interior, then ϕ(θ,ξ)(qFB(θ, ξ)) = −v′(qFB(θ, ξ)) since ϕ(θ,ξ) must

coincide with the unique subgradient −v′ on the interval (0, A); thus equation (1) reduces to the

first-order condition

θv′(qFB(θ, ξ)) = c+ ξ.

However, when qFB(θ, ξ) = 0 or A, then −v is no longer differentiable and has infinitely many

subgradients. The above choices of ϕ(θ,ξ) at q = 0 and q = A ensure that equation (1) is nonetheless

satisfied.
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Theorem 1. The deadweight loss due to any mechanism (q, t) is equal to the average Bregman

divergence between the allocation function q and the first-best allocation function qFB, weighted by

consumption types θ:

DWL =

∫ θ

θ

∫ ξ

ξ

θ ·∆(θ,ξ)
−v

(
q(θ), qFB(θ, ξ)

)
dG(θ, ξ).

Geometrically, this relationship can be deduced directly from Figure 4(b) when q and qFB are

interior. For completeness, I provide the following proof that holds for any q, qFB ∈ [0, A].

Proof of Theorem 1. For a given consumer of type (θ, ξ), observe that the deadweight loss due to

any mechanism (q, t) for that consumer can be written as

DWL(θ, ξ) = θ
[
v(qFB(θ, ξ))− v(q(θ))

]
− (c+ ξ)

[
qFB(θ, ξ)− q(θ)

]
= θ

[
v(qFB(θ, ξ))− v(q(θ))

]
− θϕ(θ,ξ)(qFB(θ, ξ))

[
qFB(θ, ξ)− q(θ)

]
= θ ·∆(θ,ξ)

−v

(
q(θ), qFB(θ, ξ)

)
.

The second equality follows from equation (1) and the third equality follows from the definition

of ∆
(θ,ξ)
−v . The desired expression for deadweight loss follows by summing over all consumers.

Theorem 1 extends Proposition 1 by generalizing the measure of distance between the allocation

function and the first-best allocation function. To see this, observe that under Assumption 1, the

Bregman divergence between q(θ) and qFB(θ, ξ) is equal to half of their squared difference:

∆
(θ,ξ)
−v

(
q(θ), qFB(θ, ξ)

)
= −Aq(θ) + 1

2
[q(θ)]2 + AqFB(θ, ξ)− 1

2

[
qFB(θ, ξ)

]2
+
[
q(θ)− qFB(θ, ξ)

] [
A− qFB(θ, ξ)

]
=

1

2

[
qFB(θ, ξ)− q(θ)

]2
.

This generalization implies that, as in the case of linear demand, the optimal allocation function

in any set of implementable allocation functions can be found via a regression approach—simply

by generalizing the regression loss function. Indeed, for any set S ⊂ Q of allocation functions, we

can define the weighted Bregman projection of qFB onto S by

argmin
q∈S

∫ θ

θ

∫ ξ

ξ

θ ·∆(θ,ξ)
−v

(
q(θ), qFB(θ, ξ)

)
dG(θ, ξ).
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In turn, this observation generalizes Corollary 1 by showing how optimal allocation functions in

the general model can nonetheless be similarly characterized as solutions to regression problems.

4.2 Second-best allocation

I now use Theorem 1 to derive the second-best allocation function.

Theorem 2. LetW be the absolutely continuous distribution with positive density w on the interval

[θ, θ] defined by

w(θ) =
θ

E[θ]

∫ ξ

ξ

g(θ, ξ) dξ and W (θ) =
1

E[θ]

∫ θ

θ

∫ ξ

ξ

zg(z, ξ) dξ dz.

Moreover, define

qFB(θ) := (v′)−1

(
d

ds

(
co

∫ s

0

c+ E [ξ | θ = W−1(z)]

W−1(z)
dz

)∣∣∣∣
s=W (θ)

)
.

Then the second-best allocation function qSB is unique and equal to

qSB(θ) =


0 if qFB(θ) ≤ 0,

A if qFB(θ) ≥ A,

qFB(θ) otherwise.

Theorem 2 extends Proposition 2 by showing that, even in the general model, the second-best

allocation function is unique and can be obtained through a combination of ironing and truncation

(cf. Lemma 2). Indeed, the function qFB in the statement of the theorem can be interpreted as an

“ironed first-best allocation function” averaged over externality types. To see why, observe that

under Assumption 1, because v′(q) = A− q, qFB can be written as

qFB(θ) = A− d

ds

(
co

∫ s

0

c+ E [ξ | θ = W−1(z)]

W−1(z)
dz

)∣∣∣∣
s=W (θ)

=
d

ds

(
co

∫ 1

s

[
A− c+ E [ξ | θ = W−1(z)]

W−1(z)

]
dz

)∣∣∣∣
s=W (θ)

=
d

ds

(
co

∫ 1

s

E
[
qFB(θ̂, ξ) | θ̂ = W−1(z)

]
dz

)∣∣∣∣
s=W (θ)

.
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A similar computation for general v justifies this interpretation. Thus the second-best allocation

function must be equal to the ironed first-best allocation function qFB, truncated below 0 and

above A to ensure feasibility.

The key to proving Theorem 2 lies in the following lemma, which builds on Lemma 2 in order

to characterize qSB as the projection of qFB onto the set of implementable allocation functions Q.

As its proof is technical, it is deferred to Appendix A.

Lemma 3. Let qSB denote the second-best allocation function as defined in Theorem 2. For any

implementable allocation function q ∈ Q, the following inequality holds:

∫ θ

θ

∫ ξ

ξ

θ ·∆(θ,ξ)
−v

(
q(θ), qFB(θ, ξ)

)
dG(θ, ξ)

≥
∫ θ

θ

∫ ξ

ξ

θ ·∆(θ,ξ)
−v

(
q(θ), qSB(θ)

)
dG(θ, ξ) +

∫ θ

θ

∫ ξ

ξ

θ ·∆(θ,ξ)
−v

(
qSB(θ), qFB(θ, ξ)

)
dG(θ, ξ).

I conclude this section by using Lemma 3 to complete the proof of Theorem 2. Notice that the

Bregman divergence between any two quantities q1, q2 ∈ [0, A] is non-negative due to the concavity

of v: since ϕ(θ,ξ)(q2) = −v′(q2) for almost every q2 ∈ [0, A],

∆
(θ,ξ)
−v (q1, q2) = v(q2)− v(q1)− (q1 − q2)ϕ

(θ,ξ)(q2)

=

∫ q2

q1

[v′(s)− v′(q2)] ds = −
∫ q2

q1

∫ q2

s

v′′(z) dz ds ≥ 0.

Thus Lemma 3 implies that the minimum deadweight loss must be no smaller than the deadweight

loss attained by qSB:

min
q∈Q

∫ θ

θ

∫ ξ

ξ

θ ·∆(θ,ξ)
−v

(
q(θ), qFB(θ, ξ)

)
dG(θ, ξ) ≥

∫ θ

θ

∫ ξ

ξ

θ ·∆(θ,ξ)
−v

(
qSB(θ), qFB(θ, ξ)

)
dG(θ, ξ).

However, it is easily verified that qSB ∈ Q is an implementable allocation function. Consequently,

qSB minimizes the deadweight loss among all implementable allocation functions.

5 Economic implications

In this section, I use the theoretical results of Section 4 to analyze the economic implications of

indirect regulation of externalities. First, I demonstrate how the regression approach sheds light on
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how optimal allocations in any set can be implemented. Second, I study the welfare implications

arising from an analysis of variance in the regression approach. Finally, I analyze when quantity

controls, including bans and mandates, are optimal.

5.1 Implementation of optimal allocation

To implement the optimal allocation, the first result of this section shows that the corresponding

marginal price faced by each consumer can be similarly derived by performing a suitable regression.

For any incentive-compatible mechanism (q, t), define the marginal price p(θ) as the marginal

price that a consumer with consumption type θ faces. On one hand, the marginal price function

can be derived by first computing the payment function by applying the envelope theorem to the

optimal allocation function. On the other hand, the regression approach that I explain below

is more direct and insightful. In particular, it leads to a reinterpretation and generalization of

Diamond’s (1973) formula for the optimal linear tax.

To derive the regression for the optimal marginal price, I consider the Bregman divergence

associated with the consumer surplus function. The consumer surplus function CS(·; θ) : [0, θA] →
R for each consumer is defined by

CS(p; θ) =

∫ θA

p

D(s; θ) ds =

∫ θA

p

(v′)−1
(s
θ

)
ds.

Clearly, CS(·; θ) is strictly convex. The associated Bregman divergence for each consumer is thus

defined by

∆θ
CS(p1, p2) := CS(p2; θ)− CS(p1; θ) + (p1 − p2) (v

′)−1
(p2
θ

)
.

Proposition 3. Given an incentive-compatible mechanism (q, t), let the marginal price function

be p. Then the deadweight loss due to (q, t) is equal to the average Bregman divergence associated

with CS(·; θ) between the marginal social cost c+ ξ and the marginal price function p:

DWL =

∫ θ

θ

∫ ξ

ξ

∆θ
CS (c+ ξ, p(θ)) dG(θ, ξ).

Consequently, given any set S of marginal price functions, the marginal price function in S that

minimizes deadweight loss can be found by projecting the social marginal cost c+ ξ onto S.

Proposition 3 shows that the regression approach implied by Theorem 1 applies not only to

quantities, but also to prices as well. In particular, the marginal price function that minimizes
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deadweight loss in any given set can be found by performing a regression that projects the marginal

social cost onto that set, just as the optimal allocation function in any given set can be found by

performing a regression that projects the first-best allocation function onto that set. Although

the loss functions for the two regressions are naturally different, Proposition 3 shows that the loss

function for the price regression remains an average of Bregman divergences.

Proposition 3 leads to a reinterpretation and generalization of Diamond’s (1973) well-known

formula for the optimal linear (i.e., constant marginal) tax. Consider the marginal tax τ(θ) :=

p(θ)−c that each consumer faces. As Diamond showed, the optimal linear tax is equal to a weighted

average of the externality generated by each consumer (cf. the discussion following Corollary 1).

But, as Proposition 3 clarifies, this formula is simply the projection of the externality ξ onto the

set of constant marginal taxes—that is, the “best estimator” of ξ in that set.

The marginal tax that implements the second-best allocation can be similarly derived by finding

the “best estimator” of ξ in the set of all implementable marginal taxes (i.e., marginal taxes that

correspond to an incentive-compatible mechanism). On one hand, when the second-best allocation

is the same for any two consumers, they must face the same marginal price. On the other hand,

notice that the Bregman divergence must obey the “law of cosines”:

∆θ
CS (c+ ξ, p(θ)) = ∆θ

CS (c+ ξ, c+ E [ξ | θ]) + ∆θ
CS (c+ E [ξ | θ] , p(θ))

+ (ξ − E [ξ | θ])
[
(v′)−1

(
p(θ)

θ

)
− (v′)−1

(
c+ E [ξ | θ]

θ

)]
.

Taking expectation with respect to ξ | θ yields the identity

E
[
∆θ

CS (c+ ξ, p(θ)) | θ
]︸ ︷︷ ︸

=E[DWL(θ,ξ) | θ]

= E
[
∆θ

CS (c+ ξ, c+ E [ξ | θ]) | θ
]
+∆θ

CS (c+ E [ξ | θ] , p(θ)) .

Therefore, deadweight loss is minimized by choosing p(θ) to minimize the right-hand side of

this identity whenever possible—namely, by setting p(θ) = c + E [ξ | θ] whenever the second-best

allocation function is not constant at θ. The following corollary summarizes this derivation.

Corollary 2. Let qFB and qSB respectively denote the ironed first-best allocation function and the

second-best allocation function as defined in Theorem 2. Then the marginal price function pSB

that implements the second-best mechanism is

pSB(θ) = c+ E
[
ξ | θ̂(θ)

]
, where θ̂(θ) := inf

z∈[θ,θ]

{
qSB(θ) = qSB(z) : qSB(z) = qFB(z)

}
.
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Corollary 2 shows how the second-best allocation can be implemented with the “best estimator”

of the externality in the set of all implementable marginal taxes. In particular, the “best estimator”

of ξ is a nonparametric estimator that accounts for ironed regions due to the binding incentive

compatibility constraints.

Finally, it follows from Corollary 2 that the correlation between externality and consumption

plays an important role in determining the shape of the marginal tax that implements the optimal

indirect regulation. Indeed, the conditional expectation E [ξ | θ] captures information about the

correlation between ξ and θ. In the special case where ξ and θ are independent (so that E [ξ | θ] =
E [ξ]), the optimal marginal tax is constant and equal to the average externality. If E [ξ | θ] is
decreasing in θ, then ξ and θ are negatively correlated;8 conversely, if ξ and θ are negatively

correlated, then E [ξ | θ] will tend to be decreasing in θ.9 In turn, a decreasing E [ξ | θ] implies that

the marginal tax that implements the second-best allocation is decreasing. However, as I show

in Section 5.3, an increasing E [ξ | θ] might not only imply an increasing marginal tax, but also

quantity controls if incentive compatibility constraints are violated.10

5.2 Welfare analysis

The regression approach also yields an intuitive decomposition of the deadweight loss due to the

second-best nonlinear tax and the additional deadweight loss due to the optimal linear tax: they

are, respectively, the “variance of ξ unexplained by θ” and the “variance of ξ explained by θ.” For

ease of exposition, I first focus on the case where the second-best allocation function is strictly

increasing, and then discuss the case where it is not necessarily so at the end of this subsection.

This decomposition is easiest to see for the special case of linear demand under Assumption 1.

In this case, the deadweight losses due to the second-best nonlinear tax and the optimal linear

tax can be explicitly computed using Proposition 1:
DWLSB =

1

2
E

[
1

θ
[ξ − E [ξ | θ]]2

]
,

DWLL =
1

2
E

[
1

θ

[
ξ − E [ξ/θ]

E [1/θ]

]2] =⇒ DWLL−DWLSB =
1

2
E

[
1

θ

[
E [ξ | θ]− E [ξ/θ]

E [1/θ]

]2]
.

8 This can be shown by observing that the covariance between ξ and θ is equal to the covariance between E [ξ | θ]
and θ; in turn, the covariance between a random variable and a decreasing function of itself is negative.

9 This holds exactly for many common joint distributions, including elliptical and log-elliptical distributions (such
as the normal and log-normal distributions).

10 This asymmetry arises because consumers impose a negative externality by assumption. In the case of a positive
externality, a decreasing E [ξ | θ]—rather than an increasing E [ξ | θ]—might lead to quantity controls.
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To interpret these expressions, consider the expectation and variance operators Ẽ and Ṽar defined

with respect to the distribution on [θ, θ]× [ξ, ξ] with density proportional to g(θ, ξ)/θ. Then the

deadweight loss due to the optimal linear tax can be decomposed in accordance to the law of total

variance:

1

2
E

[
1

θ

[
ξ − E [ξ/θ]

E [1/θ]

]2]
︸ ︷︷ ︸

DWLL

=
1

2
Ẽ

[(
ξ − Ẽ [ξ]

)2]
=

1

2
Ṽar [ξ]

=
1

2
Ẽ
[
Ṽar [ξ | θ]

]
+

1

2
Ṽar

[
Ẽ [ξ | θ]

]
=

1

2
E

[
1

θ
E
[
[ξ − E [ξ | θ]]2 | θ

]]
︸ ︷︷ ︸

DWLSB

+
1

2
E

[
1

θ

[
E [ξ | θ]− E [ξ/θ]

E [1/θ]

]2]
︸ ︷︷ ︸

DWLL −DWLSB

.

This shows that the deadweight loss due to the optimal linear tax can be interpreted as the

variance of ξ. By using the second-best nonlinear tax instead, the social planner can achieve a

welfare gain equal to the variance of ξ that is explained by θ. However, a deadweight loss equal to

the variance of ξ that is unexplained by θ remains: this deadweight loss arises because the social

planner cannot measure and directly tax the externality.

This decomposition can be extended to the case of general demand by defining suitable analogs

of the expectation, variance, and conditional variance operators. For any function ψ : [θ, θ]× [ξ, ξ],

define the analog E of the expectation operator by

E [ψ(θ, ξ)] ∈ argmin
τ∈R

E
[
∆θ

CS (c+ ψ(θ, ξ), c+ τ)
]
.

This analogy is justified in the special case where the distribution of θ is degenerate, in which case

E [ψ(θ, ξ)] = E [ψ(θ, ξ)] (Banerjee, Merugu, Dhillon, Ghosh, and Lafferty, 2005). Further define

the analog V of the variance operator by

V [ψ(θ, ξ)] := E
[
∆θ

CS (c+ ψ(θ, ξ), c+ E [ψ(θ, ξ)])
]
.

Similar to the variance operator, V measures the “average distance” between ψ(θ, ξ) and E [ψ(θ, ξ)].

Finally, the analog V [· | θ] to the conditional variance operator is defined by

V [ψ(θ, ξ) | θ] := E
[
∆θ

CS (c+ ψ(θ, ξ), c+ E [ψ(θ, ξ) | θ])
]
.
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Similar to the conditional variance operator, V [· | θ] measures the residual variance from using

E [ψ(θ, ξ) | θ] to predict ψ(θ, ξ). Using these definitions, the following proposition derives an analog

of the law of total variance, which extends the deadweight loss decomposition to the case of general

demand.

Proposition 4. The deadweight loss due to the optimal linear tax is V [ξ], which satisfies the

identity

V [ξ] = E [V [ξ | θ]] + V [E [ξ | θ]] .

When the second-best allocation function is strictly increasing, V [ξ | θ] is equal to the deadweight

loss due to the second-best nonlinear tax, and V [E [ξ | θ]] is equal to the additional deadweight loss

due to the restriction to a linear tax.

Proposition 4 is summarized by Figure 5.

DWL0

first-best (FB) linear tax (L)second-best (SB)

(variance unexplained by θ) (variance explained by θ)

E [V [ξ | θ]] V [E [ξ | θ]]

V [ξ]

(total variance)

Figure 5: Decomposition of deadweight loss in Proposition 4.

The deadweight loss decomposition given by Proposition 4 has implications for policy. While

linear taxes might often be easier to implement, significant welfare gain can sometimes be achieved

by nonlinear taxes. Proposition 4 provides a way to evaluate how much welfare is lost by restriction

to a linear tax via the fraction of variance unexplained, V [E [ξ | θ]] /V [ξ]. The closer this fraction

is to 1, the more the policymaker should consider using nonlinear taxes.

Finally, when the second-best allocation function is not necessarily strictly increasing, the

deadweight loss due to the second-best nonlinear tax will generally be larger than E [V [ξ | θ]]. An
additional deadweight loss arises because of the binding incentive compatibility constraint (IC).

In this case, the fraction of variance unexplained nevertheless provides an upper bound on how

much deadweight loss due to the optimal linear tax can be overcome with a nonlinear tax. In the

next section, I examine this case and establish necessary and sufficient conditions under which the

second-best allocation function requires certain quantity controls.
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5.3 When are quantity controls optimal?

I now examine when quantity controls are optimal. I begin by characterizing when extreme forms

of these controls—namely, bans and mandates—are justified.

Proposition 5 (bans and mandates).

(i) The second-best mechanism is a ban (i.e., qSB(θ) ≡ 0) if and only if

∫ θ

θ̂

∫ ξ

ξ

[c+ ξ − θv′(0)] dG(θ, ξ) ≥ 0 for any θ̂ ∈ [θ, θ].

(ii) The second-best mechanism is a mandate (i.e., qSB(θ) ≡ A) if and only if

∫ θ̂

θ

∫ ξ

ξ

[θv′(A)− c− ξ] dG(θ, ξ) ≥ 0 for any θ̂ ∈ [θ, θ].

Proposition 5 gives simple necessary and sufficient conditions under which bans or mandates

are optimal. In the case of a ban, the expected social marginal cost must intuitively be sufficiently

high so as to outweigh the expected marginal benefit from consuming any quantity of the good.

This intuition is formalized by the first condition in the proposition, which states that conditional

on having a consumption type above any θ̂ ∈ [θ, θ], the expected social marginal cost must be no

less than the expected marginal benefit from consuming the zeroth unit of the good. In the case

of a mandate, it is more natural to think of ξ < 0 so that consumption of the good generates a

positive externality, such as a vaccine that prevents the spread of a virus. Nevertheless, a similar

condition holds, as formalized by the second condition in the proposition: conditional on having

a consumption type above any θ̂ ∈ [θ, θ], the expected marginal benefit must be no less than the

expected social marginal cost from consuming the zeroth unit of the good.

While the formal proof of Proposition 5 is provided in Appendix A, the simple form of these

conditions allow for an intuitive justification using a variational argument. Observe that a ban is

optimal if only if any deviation from a ban causes more social harm than benefit. Since the social

harm generated is linear in consumption and the benefit derived is concave in consumption, it is

sufficient to check that this condition holds for infinitesimal deviations. By Lemma 1, any such

deviation can be represented as a convex combination of allocations that allocate an infinitesimal

quantity to those whose consumption types exceed a certain threshold; hence this condition must

be checked only at these extreme allocations. A similar argument applies to the case of a mandate.
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To connect these conditions to the motivating example of a vaccine, which has unit demand,

a technical observation should be noted here. Although I have focused on the case of continuous

demand, it should be pointed out that Proposition 5 (and, more generally, the rest of my analysis)

can be extended to the case of unit demand, such as for a vaccine. To do so, set A = 1, consider

the sequence of functions vε(q) = q − εq2/2 for 0 < ε < 1, and take the limit ε→ 0. In this limit,

the quantity of the good consumed by a consumer can be interpreted as the probability that he

receives the good. Because each vε is an increasing and strictly concave function, it satisfies the

assumptions of the model presented in Section 2. As such, Proposition 5 applies to each vε. Since

v′ε(q) → 1 pointwise, it follows that the second-best mechanism is a mandate in the limiting unit

demand model if and only if E
[
θ − c− ξ | θ ≥ θ̂

]
≥ 0 for any θ̂ ∈ [θ, θ].

Because the conditions in Proposition 5 are both necessary and sufficient, it is relatively easy to

derive comparative statics on the optimality of bans or mandates as the correlation varies between

consumption and externality. To see this, observe that the condition for a ban to be optimal can

be written as

c+ E
[
ξ | θ > θ̂

]
≥ v′(0) · E

[
θ | θ > θ̂

]
for any θ̂ ∈ [θ, θ]. (2)

Fix the marginal distribution of θ. Then a ban is more likely to be optimal if the upper cumulative

conditional expectation, E
[
ξ | θ > θ̂

]
, is higher pointwise in θ̂. While this is obviously true under

pointwise increases of E [ξ | θ], this is also true under mean-preserving spreads of E [ξ | θ] (with
respect to the measure on θ given by the marginal distribution of θ). Consequently, more dispersion

in E [ξ | θ] (i.e., a weaker correlation between ξ and θ) favors the use of a ban. A similar insight

obtains for the case of a mandate.

When the conditions in Proposition 5 are satisfied, they provides support for the use of bans

and mandates to indirectly regulate externalities. In reality, however, these conditions might even

understate the actual use of bans and mandates for at least two reasons. First, policymakers might

find it difficult to implement complicated nonlinear taxes in some settings. Therefore, even if a ban

or mandate is not second-best, it might be nonetheless optimal within the more constrained set

of policies that the policymaker can easily implement. Second, quantity controls might sometimes

be cheaper to enforce than taxes due to the ease of identifying violations (Glaeser and Shleifer,

2001). For example, it might be easier to identify whether a store is selling psychoactive drugs at

all than how much it is charging consumers for them. An analysis that accounts for enforcement

costs might thus favor the use of bans and mandates even more.

Even if bans and mandates are not optimal, other types of quantity controls may nonetheless

be justified. Two other types of quantity controls are quantity floors and quantity ceilings, which
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respectively impose a minimum quantity and a maximum quantity of consumption. Since any

mechanism can stipulate a non-binding minimum or maximum quantity, I say that a mechanism

(q, t) imposes a quantity floor only if the specified minimum quantity binds for a positive measure

of consumers: that is, if q(θ) = q = inf im q holds for a positive measure of consumption types θ.

Similarly, a mechanism imposes a quantity ceiling only if the specified maximum quantity binds

for a positive measure of consumers.

Proposition 6 (quantity floors and ceilings).

(i) The second-best mechanism imposes a quantity floor if and only if there exists θ∗ ∈ (θ, θ]

such that
c+ E [ξ | θ ≤ θ∗]

c+ E [ξ | θ = θ]
≥ E

[
θ

θ
| θ ≤ θ∗

]
.

(ii) The second-best mechanism imposes a quantity ceiling if and only if there exists θ∗ ∈ [θ, θ)

such that
c+ E [ξ | θ > θ∗]

c+ E
[
ξ | θ = θ

] ≤ E

[
θ

θ
| θ > θ∗

]
.

Similar to Proposition 5, Proposition 6 gives necessary and sufficient conditions under which

quantity floors and quantity ceilings are optimal. In the case of quantity floors, the first condition

in Proposition 6 evaluates the ratio of the expected social marginal cost, conditional on having a

consumption type not exceeding θ∗, to the expected social marginal cost, conditional on having

a consumption type of θ. This ratio is compared to the ratio of the expected consumption type,

conditional on having a consumption type not exceeding θ∗, to the lowest consumption type of θ.

In the case of quantity ceilings, the second condition in Proposition 6 takes a similar form, except

that expectations are taken conditional on either having a consumption type exceeding θ∗ or equal

to θ instead.

These conditions express that quantity floors and quantity ceilings are optimal when the ratio

of social marginal cost to consumption type differs locally at either θ or θ from an average of these

ratios in their neighborhoods. Then the social planner would prefer to induce a higher allocation for

the lowest consumption type θ (in the case of a quantity floor) and a lower allocation for the highest

consumption type θ (in the case of a quantity ceiling) than other consumers with neighboring

consumption types. Because incentive compatibility constraints bind, the social planner is unable

to do so without also changing the allocations of other consumers with neighboring consumption

types. Under the conditions stated in Proposition 6, the gains in doing so are just large enough
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that the social planner would optimal equalize the allocations of consumers with consumption

types around either θ or θ by imposing a quantity floor or quantity ceiling.

By directly considering the ratio of social marginal cost to consumption type, the conditions of

Proposition 5 can be simplified to give sufficient conditions for the optimal use of quantity floors

and quantity ceilings. This is shown in the following corollary:

Corollary 3 (quantity floors and ceilings). Let χ(θ) denote the ratio of the expected social marginal

cost to the consumption type at θ:

χ(θ) :=
c+ E [ξ | θ]

θ
.

(i) The second-best mechanism imposes a quantity floor if χ′(θ) ≥ 0.

(ii) The second-best mechanism imposes a quantity ceiling if χ′(θ) ≥ 0.

Finally, as in the case of bans and mandates, the fact that conditions in Proposition 6 are

both necessary and sufficient allows comparative statics on the optimality of quantity floors or

quantity ceilings to be derived. To this end, fix the marginal distribution of θ and the conditional

expectation E
[
ξ | θ = θ

]
. Then the condition in Proposition 6 implies that a quantity ceiling is

more likely to be optimal if the upper cumulative conditional expectation, E
[
ξ | θ > θ̂

]
, is higher

pointwise in θ̂. Again, this is true under both pointwise increases and mean-preserving spreads of

E [ξ | θ]. More dispersion in E [ξ | θ] (i.e., a weaker correlation between ξ and θ) thus favors the use

of a quantity ceiling. This generalizes the previous insight for bans and mandates: it demonstrates

that more dispersion in E [ξ | θ] generally favors the use of quantity controls.

6 Empirical application

I now apply my regression approach to the taxation of vehicle miles traveled (VMT) to regulate

automobile externalities.

6.1 Setting

Although many automobile externalities are currently regulated via a gas tax (Parry, Walls, and

Harrington, 2007), it is likely that this will change in the near future. There are at least two reasons

for this change. First, advancements in telematics technology now allow cumulative miles driven
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to be tracked on the level of individual vehicles. This opens a new possibility for policymakers:

nonlinear taxation of VMT. Whereas it would be infeasible to tax gas nonlinearly due to the

potential for fraud (as pointed out by Diamond, 1973), telematics sensors that track VMT on the

level of individual vehicles will eliminate this susceptibility. Second, gas vehicles are increasingly

being replaced by electric vehicles. This means that the gas tax will no longer be able to indirectly

regulate aexternalities imposed by electric vehicles. These reasons motivated a $125 million pilot

study for a VMT tax as part of the Bipartisan Infrastructure Bill, which was signed into law by

U.S. President Joe Biden in November 2021. However, even if the rapid uptake of electric vehicles

was set aside, a nonlinear tax promises to be more efficient than a linear tax (cf. Proposition 4).

The magnitude of this potential efficiency gain, however, is an empirical question.

To evaluate the potential gain in efficiency of this policy change, a key question concerns the

empirical relationship between automobile externalities and VMT consumption. In the context of

my model (cf. Section 2), a key determinant of the optimal indirect tax is the joint distribution

G of VMT consumption preferences, θ, and externalities generated by VMT consumption, ξ. In

particular, the correlation between θ and ξ determines how much welfare gain a nonlinear VMT

tax might potentially achieve over a linear VMT tax or a linear gas tax.

In this section, I focus on the taxation of VMT to indirectly regulate emissions externalities

because prior work by Knittel and Sandler (2018) has estimated the empirical relationship between

emission externalities and VMT consumption. By using data from the Californian Smog Check

Program between 1998 and 2008, Knittel and Sandler estimate the demand for VMT and show

that it is correlated with the amount of CO, HCs, and NOx pollutant emissions produced by each

vehicle. As Knittel and Sandler are interested in the taxation of gas (rather than VMT), they

convert demand for VMT into demand for gas, compute the optimal linear gas tax, and evaluate

the deadweight loss that would remain under the optimal linear gas tax. Below, I use the results

developed in this paper to evaluate the performance of three indirect regulations in this empirical

setting: (i) the optimal linear VMT tax; (ii) the optimal nonlinear VMT tax; and (iii) the optimal

two-piece piecewise-linear VMT tax that sets a different marginal tax rate for those who consume

above and below the median, which can be interpreted as a simple nonlinear VMT tax.

To estimate the relationship between emission externalities and VMT consumption, Knittel

and Sandler posit a linear demand model identical to the one presented in Section 3. Consumption

preferences for VMT are determined by a consumption type θ, which is equal in magnitude to the

slope of the consumer’s inverse demand curve. The social marginal cost ξ of VMT consumption is

constant, but it differs across consumers due to the heterogeneity in CO, HCs, and NOx pollutants

generated per mile.
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Figure 6: Binned scatter plot of empirical relationship between externality and consumption types.

Figure 6 plots the relationship between θ and ξ as implied by Knittel and Sandler’s estimates for

all years in the sample. Clearly, θ and ξ are negatively correlated. Since θ is equal in magnitude to

the slope of the consumer’s inverse demand curve, it measures the price sensitivity of the consumer:

consumers with a lower θ are more price-sensitive. Therefore, Figure 6 shows that consumers who

are more price-sensitive also tend to generate a greater externality per mile.

Figure 6 implies that the second-best allocation can be implemented using a marginal tax that

is decreasing for most consumers and mildly increasing for those who are the least price-sensitive.

Indeed, it can be readily verified that the mild increase in Figure 6 in the conditional expectation

E [ξ | θ] for high consumption types does not violate incentive compatibility constraints, and so the

second-best allocation does not require ironing. By Corollary 2, the marginal tax that implements

the second-best allocation function is thus exactly equal to nonparametric estimator E [ξ | θ], which
is decreasing in θ for most consumers but mildly increasing for the least price-sensitive.

6.2 Results

Using my regression approach, I compute the deadweight loss due to three VMT taxes: the optimal

linear VMT tax, a simple nonlinear VMT tax which I describe below, and the optimal nonlinear

(i.e., second-best) VMT tax. I compare these to the deadweight loss due to the optimal linear gas

tax as computed by Knittel and Sandler. The results are shown in Table 1.
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Year
DWL

linear gas linear VMT simple nonlinear VMT second-best VMT

1998 $111.6M $86.3M $81.2M $74.5M
1999 $91.2M $70.2M $66.1M $60.2M
2000 $76.5M $59.6M $56.1M $51.2M
2001 $63.0M $51.4M $48.8M $44.8M
2002 $51.8M $43.1M $41.3M $38.0M
2003 $41.2M $34.2M $32.9M $30.6M
2004 $31.5M $26.8M $26.1M $24.6M
2005 $20.9M $18.3M $18.0M $17.3M
2006 $16.5M $14.8M $14.6M $14.1M
2007 $12.7M $11.5M $11.4M $11.0M
2008 $10.3M $9.5M $9.4M $9.1M

Average $47.9M $38.7M $36.9M $34.1M

Table 1: Deadweight loss by year under different counterfactual policies.

As Table 1 shows, a modest amount of deadweight loss remains even after imposing the optimal

linear VMT tax. Given the relationship between θ and ξ as shown in Figure 6, this is unsurprising.

As Proposition 3 implies, the deadweight loss due to the optimal linear tax is equal to the residual

sum of squares from projecting ξ onto a constant function of θ, since the marginal tax is constant.

But the relationship between θ and ξ is obviously not well described by a constant function, and

so a modest amount of deadweight loss is expected to remain under the optimal linear VMT tax.

Furthermore, Table 1 shows that the deadweight loss due to the optimal linear VMT tax yields

a smaller deadweight loss relative to the optimal linear gas tax. This is because a gas tax is exposed

to additional heterogeneity in fuel efficiency, which introduces more variance in externality. As

Proposition 4 shows, additional variance in externality reduces the efficiency of the optimal linear

tax and increases deadweight loss.

However, the policymaker can do better than the optimal linear VMT tax. In particular, the

decreasing relationship between ξ and θ as shown in Figure 6 suggests the use of different marginal

taxes for consumers with low θ and for consumers with high θ. To illustrate, consider a simple

nonlinear VMT tax that sets two marginal tax rates: one for those with an above-median θ and

one for those with a below-median θ. The deadweight loss is shown in the fourth column of Table 1

and is equal to the residual sum of squares from projecting ξ onto a two-piece piecewise-constant

function of θ with a discontinuity at the median. On average, despite its simplicity, it performs

3.5% better than the optimal linear VMT tax and entails an annual welfare gain of $1.8M.
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Using Corollary 2, I determine the second-best VMT tax by nonparametrically regressing ξ on

θ. By Proposition 3 and Proposition 4, the R2 of this weighted least squares regression gives the

fraction of the deadweight loss due to the optimal linear VMT tax that can be recovered. I use

this to compute the last column of Table 1. On average, the second-best VMT tax performs 9.5%

better than the optimal linear VMT tax and entails an annual welfare gain of $2.8M.

In addition, Table 1 shows that the amount of deadweight loss that can be recovered by any of

the indirect policies decreases over time. This arises for two reasons. First, the total deadweight

loss decreases over the sample period as the fleet of vehicles in California became cleaner. As

Knittel and Sandler observe, one reason for this is that the U.S. Environmental Protection Agency

tightened limits on the emissions per mile of new vehicles, whose overall share in the fleet grew over

time. California also has more stringent new-vehicle emissions standards than other U.S. states,

which contributed to the shrinking of the total deadweight loss. With a smaller total deadweight

loss, the deadweight loss due to a linear gas tax or a linear VMT tax (i.e., the first and second

columns in Table 1) would be expected to decrease over time. Second, as Knittel and Sandler

show, the skew of the distribution of externalities also reduced over this period. This could have

the effect of dampening the correlation between ξ and θ, which would leave a greater share of the

variance of ξ unexplained by θ. As Proposition 3 implies, this would contribute to the reduced

effectiveness of nonlinear taxation over time, as shown in the third and fourth columns of Table 1.

Overall, this application demonstrates how my regression approach can be applied to empirical

settings. As I have shown, the optimal indirect regulation in each of three families of regulations—

linear VMT taxes, simple two-piece piecewise-linear VMT taxes, and nonlinear VMT taxes—can

be computed by estimating a different regression. The welfare implications of each regulation can

be easily computed via an analysis of variance for each of the estimated regressions.

7 Extensions

In this section, I discuss how my regression approach and results extend in two ways: (i) when

the externality takes a more general form and (ii) when the social planner has revenue and/or

distributional concerns.

7.1 More general form of externality

While I have assumed that consumers’ utility functions are additively separable in the externality

for ease of exposition, extending the approach to more general utility functions is straightforward.
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Suppose that, if a consumer with type (θ, ξ) consumes a quantity q(θ, ξ) of the good and makes a

payment of t(θ, ξ), then he realizes a utility of

θv(q(θ, ξ), E)− t(θ, ξ), where E =

∫ θ

θ

∫ ξ

ξ

ξq(θ′, ξ′) dG(θ′, ξ′).

This is the case, for example, if the externality generated by other consumers reduces the benefit

that the consumer in question derives from the good. For instance, congestion might reduce the

consumption benefit that each consumer derives from driving. I assume that v is continuous in

both arguments, and that v(·, E) is twice continuously differentiable, increasing, and concave for

any value E ∈ R of the total externality.

The only way in which a non-additively separable externality changes the analysis is that the

social marginal cost of the externality might generally depend on the total amount of externality.

The social planner solves:

max
q,E

{∫ θ

θ

∫ ξ

ξ

[θv(q(θ), E)− cq(θ)] dG(θ, ξ) :

∫ θ

θ

∫ ξ

ξ

ξq(θ) dG(θ, ξ) = E

}
.

For any given value of E, the constraint on total externality can be incorporated into the social

planner’s objective through a Lagrangian multiplier λ, which represents the shadow cost of the

externality when the total externality is E. Consequently, the approach developed in Section 4

nonetheless applies for that value of E with a social marginal cost of c+ λξ.

A different situation with a more general form of externality arises when consumers generate an

externality that varies nonlinearly with consumption. Suppose that a consumer with an externality

type of ξ generates ξe(q) units of the externality when he consumes q units of the good, where

e : R+ → R+ is an increasing convex function. This nests the model presented in Section 2 as a

special case (i.e., when e(q) = q). Then the regression approach developed in Section 4 still holds

with a change of variables: by letting x(θ) = e(q(θ)) and defining the increasing concave function

ṽ = v ◦ e−1, the previous analysis goes through by replacing q with x and v with ṽ. Qualitatively,

however, any nonlinearity in e will favor a nonlinear tax. Indeed, even the first-best benchmark

in this case can generally only be implemented by a nonlinear tax on the good.
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7.2 Revenue and distributional concerns

In many settings of interest—such as taxes on alcohol, cigarette, and sugary drinks—policymakers

might have revenue concerns in addition to the objective of regulating externalities. Suppose that

the social planner places some weight α ∈ R+ on the total revenue that the tax raises, so that she

solves:

max
q

∫ θ

θ

∫ ξ

ξ

{[
θ − α

1− F (θ)

f(θ)

]
v(q(θ))− (c+ ξ) q(θ)

}
dG(θ, ξ), (3)

where F denotes the marginal distribution of θ with density f on the interval [θ, θ], induced by the

joint distribution G. For ease of notation, write Jα(θ) = θ−α [1− F (θ)] /f(θ); α = 0 corresponds

to the case of a social planner who maximizes total social surplus, while α = 1 corresponds to the

case of a social planner who maximizes total revenue.

Although the social planner has a more general objective function, a regression approach

nonetheless applies with a change of variables. By setting x(θ) = v(q(θ)), write the social planner’s

problem as

min
x

∫ θ

θ

∫ ξ

ξ

(c+ ξ)

[
v−1(x(θ))− Jα(θ)

c+ ξ
x(θ)

]
dG(θ, ξ).

Since v is increasing and concave, hence v−1 is convex. It follows that the social planner’s objective

can again be written as a weighted sum of Bregman divergences.

However, there are two notable differences between this approach and the one developed in

Section 4. First, instead of θ, the Bregman divergences here are weighted by the social marginal

cost c + ξ. This difference arises because Jα(θ), unlike θ, is not guaranteed to be positive when

α ̸= 0. Intuitively, because uniform transfers from consumers to the social planner are no longer

welfare neutral, the social planner must now account for the difference in utilities arising from

transfers; hence, the regression that the social planner performs must be in utilities rather than in

quantities. Second, instead of the first-best allocation function, the solution to the social planner’s

problem here is equal to the projection of the “target allocation function,”

qT(θ, ξ) = (v′)−1

(
c+ ξ

Jα(θ)

)
.

This target allocation function is what the social planner would choose if the externality could be

measured and directly taxed. The target allocation function is distorted downwards relative to the

first-best allocation function: the social planner sets a higher tax to extract higher tax revenue,

which induces inefficiently lower consumption. It can also be shown using the regression approach
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that a similar comparative static holds for the solution to the social planner’s problem (i.e., the

projection of the target allocation function onto the set of implementable allocations).

A different but related concern that can arise is the distributional impact of corrective taxation:

the policymaker might face an additional trade-off between equity and efficiency.11 Suppose that

the social planner assigns an expected weight of ω(θ) to the utility of a consumer with consumption

type θ. A standard envelope theorem argument shows that the social planner’s problem can be

written in a similar form as equation (3), which can be solved in an identical fashion to the case

of revenue concerns, albeit with a different target allocation function.

8 Conclusion

Policymakers often introduce quantity controls to regulate goods that cause externalities because

the amount of externalities generated by each consumer is heterogeneous and difficult to measure.

This paper provides some justification for these regulations by characterizing when the optimal

regulation might require quantity controls. This is because the amount of the externality generated

can be correlated with the amount of the good demanded. The policymaker can thus indirectly

regulate externalities by regulating the good in such a way as to exploit this correlation. As I

show, quantity controls can sometimes best exploit this correlation and minimize the deadweight

loss of indirect regulation.

To analyze the deadweight loss of indirect regulation, this paper develops an approach based on

regression. This approach is motivated by the classic analysis of Harberger (1964), which is widely

expanded on in the sufficient statistics literature (Chetty, 2009; Kleven, 2021). While Harberger’s

original analysis applies only to linear taxes and linear demand, this paper’s contribution is to show

that a combination of Harberger’s analysis and mechanism design techniques produces a unified

approach for nonlinear taxes and general demand. This approach shows that the deadweight loss

of indirect regulation is equal to the residual of a regression of the first-best allocation function

onto any given family of allocation functions. The optimal allocation function in that family is thus

equal to the corresponding projection of the first-best allocation function. Using this approach,

I derive the second-best regulation by characterizing the projection operator onto the family of

implementable allocation functions and show that the second-best allocation function can require

quantity controls. This can occur, for example, when consumers who have the highest demand

11 Akbarpour R○ Budish R○ Dworczak R○ Kominers (2023) and Pai and Strack (2022) analyze how the trade-off
between equity and efficiency affects the direct taxation of externalities.
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tend to generate disproportionately more external harm, resulting in the optimal use of a quantity

ceiling to cap the total amount of external harm generated.

In addition to characterizing optimal policies, my approach also uncovers new implications for

indirect regulation. I illustrate with three insights. First, the marginal prices that implement the

optimal allocation can be derived by performing the regression in prices rather than quantities,

which allows for a reinterpretation and generalization of Diamond’s (1973) classic formula for the

optimal linear tax. Second, applying the law of total variance to this regression sheds light on

welfare: whereas the deadweight loss of the optimal linear indirect tax arises due to the variance in

externality, the second-best nonlinear indirect tax is able to recover up to the variance in externality

that is explained by consumption. Third, this regression approach allows the optimal indirect tax

to be estimated empirically, which I demonstrate by applying my results to the taxation of vehicle

miles traveled for regulating automobile externalities.

The usefulness of this approach likely extends beyond the indirect regulation of externalities.

On one hand, the externality type ξ in this paper can be straightforwardly reinterpreted either as

an internality or as an additive shifter of marginal cost for each consumer. Therefore, my analysis

could likely be extended to such settings to potentially explain quantity controls and other types of

regulatory policies in settings with internalities and/or adverse selection. On the other hand, the

widespread use of Harberger triangles in empirical work highlights the potential for the approach

developed by this paper to analyze optimal nonlinear taxation and counterfactual welfare gains

in the same empirical settings. In particular, settings with imperfect pricing policies (Jacobsen

et al., 2020)—such as electricity pricing with wedges between the marginal cost of production

and real-time pricing, durable goods with heterogeneity in utilization, and congestion pricing with

imperfect spatial and temporal policy differentiation—seem amenable to study with this approach.
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Appendix A Omitted proofs

This appendix supplies omitted proofs, which are presented in chronological order of results in the

main text of the paper.

A.1 Proof of Lemma 1

Since individual reports do not affect the aggregate externality in the market, observe that the

incentive compatibility (IC) constraint implies that

(θ, ξ) ∈ argmax
(θ̂,ξ̂)

[
θv(q(θ̂, ξ̂))− t(θ̂, ξ̂)

]
.

Therefore, for any (θ, ξ), (θ′, ξ′) ∈ [θ, θ]× [ξ, ξ],

{
θv(q(θ, ξ))− t(θ, ξ) ≥ θv(q(θ′, ξ′))− t(θ′, ξ′),

θ′v(q(θ′, ξ′))− t(θ′, ξ′) ≥ θ′v(q(θ, ξ))− t(θ, ξ).

Subtracting the second expression from the first yields

(θ − θ′) [v(q(θ, ξ)− v(q(θ′, ξ′)] for any θ, ξ), (θ′, ξ′) ∈ [θ, θ]× [ξ, ξ].

This implies that

q(θ, ξ) ≥ q(θ′, ξ′) for any θ ≥ θ′ and ξ, ξ′ ∈ [ξ, ξ].

In turn, this means that, for sufficiently small ε,

q(θ + ε, ξ) ≥ q(θ, ξ′) for almost any θ ∈ [θ, θ] and ξ, ξ′ ∈ [ξ, ξ].

Taking the limit ε→ 0 yields

q(θ, ξ) ≥ q(θ, ξ′) for almost any θ ∈ [θ, θ] and ξ, ξ′ ∈ [ξ, ξ].

This implies that there exists q̂ ∈ Q such that q(θ, ξ) = q̂(θ) for almost every (θ, ξ) ∈ [θ, θ]× [ξ, ξ],

as claimed.
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A.2 Proof of Lemma 2

Let L2([θ, θ]; dW ) denote the set of functions on [θ, θ] that are square-integrable with respect to

the measure dW , where W has density w on [θ, θ]. Observe that Q ⊂ L2([θ, θ]; dW ) is nonempty,

closed, and convex. Therefore, by the Hilbert projection theorem, a unique projection exists for

any q0 ∈ L2([θ, θ]; dW ) onto Q.

Next, to show that its unique solution is given by q∗, begin by assuming that q0(θ) ∈ [0, A] for

all θ ∈ [θ, θ]. Define

I :=
{
q ∈ L2([θ, θ]; dW ) is non-decreasing

}
.

Let ΠI(q0) denote the projection of q0 onto I. Since I ⊂ L2([θ, θ]; dW ) is also nonempty, closed,

and convex, the projection is unique, hence ΠI(q0) is well-defined. Since I is a convex cone,

∫ θ

θ

[ΠI(q0)(θ)− q0(θ)] q(θ)w(θ) dθ ≥ 0 for any q ∈ I.

In particular, choose q(θ) = 1θ>t for some t ∈ [θ, θ]. Then the above implies that

Q(t) :=

∫ θ

t

ΠI(q0)(θ)w(θ) dθ ≥
∫ θ

t

χ(θ)w(θ) dθ =: Q(t).

Since ΠI(q0) is non-decreasing on [θ, θ], Q must be concave; hence Q is a concave majorant of

Q. Now, if Q is not the least concave majorant of Q, then there exist θ < θ1 < θ2 < θ and a

separating linear function ℓ(θ), such that ℓ(θ) ≥ Q(θ) for θ ∈ [θ, θ]; Q(θ) > ℓ(θ) for θ ∈ (θ1, θ2);

and Q(θi) = ℓ(θi) for i = 1, 2. Define q̃ by q̃(θ) = ΠI(q0)(θ) for θ ̸∈ (θ1, θ2) and q̃(θ) = ℓ′(θ) for

θ ∈ (θ1, θ2). Then integration by parts yields the following contradiction:

0 ≤
∫ θ

θ

[ΠI(q0)(θ)− q0(θ)] [q̃(θ)− ΠI(q0)(θ)]w(θ) dθ

= −
∫ θ

θ

[
Q(θ)−Q(θ)

]
w(θ) d [q̃(θ)− ΠI(q0)(θ)] =

∫ θ2

θ1

[
Q(θ)−Q(θ)

]
w(θ)dΠI(q0)(θ) < 0.

Therefore Q is the least concave majorant of Q. It follows that ΠI(q0) = − (coQ)′ = q0.

It remains to consider the case where either q0(θ) ≤ 0 or q0(θ) ≥ A for some θ ∈ [θ, θ]. Define

t so that χ(θ) ≤ 0 for all θ ∈ [θ, t); and 0 < q0(θ) for all t ∈ (t, θ]. Such a t ∈ [θ, θ] exists since

q0 is non-decreasing by construction. The argument above shows that q0 minimizes the integral
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between t and θ:

q0 ∈ argmin
q∈Q

∫ θ

t

[q(θ)− q0(θ)]
2w(θ) dθ.

Since Q ⊂ I, the argument above also shows that the constraint q(θ) ≥ 0 must bind for θ ∈ [θ, t].

The case where q0(θ) ≥ A can be similarly dealt with. This yields the solution q∗ as defined in

Lemma 2.

A.3 Proof of Lemma 3

Using the definition of the Bregman divergence, it can be seen that

∆
(θ,ξ)
−v

(
q(θ), qSB(θ)

)
+∆

(θ,ξ)
−v

(
qSB(θ), qFB(θ, ξ)

)
= ∆

(θ,ξ)
−v

(
q(θ), qFB(θ, ξ)

)
−
[
qSB(θ)− q(θ)

] [
ϕ(θ,ξ)(qFB(θ, ξ))− ϕ(θ,ξ)(qSB(θ))

]
.

Therefore, it suffices to show that, for any q ∈ Q,

∫ θ

θ

∫ ξ

ξ

θ ·
[
qSB(θ)− q(θ)

] [
ϕ(θ,ξ)(qFB(θ, ξ))− ϕ(θ,ξ)(qSB(θ))

]
dG(θ, ξ) ≥ 0.

By equation (1), this is equivalent to showing that, for any q ∈ Q,

∫ θ

θ

∫ ξ

ξ

θ ·
[
qSB(θ)− q(θ)

] [c+ ξ

θ
+ ϕ(θ,ξ)(qSB(θ))

]
dG(θ, ξ) ≤ 0.

To analyze the integral on the left-hand side, we divide the interval [θ, θ] into two sets:{
Θbd :=

{
θ ∈ [θ, θ] : qFB(θ) ≤ 0 or qFB(θ) ≥ A

}
,

Θint :=
{
θ ∈ [θ, θ] : 0 < qFB(θ) < A

}
.

Now, we make the following observations:

• If θ ∈ Θbd, then q
SB(θ) = 0 or A; hence we have

ϕ(θ,ξ)(qSB(θ)) = −c+ ξ

θ
.

42



This implies that the integral evaluates to zero on Θbd:∫
θ∈Θbd

∫ ξ

ξ

θ ·
[
qSB(θ)− q(θ)

] [c+ ξ

θ
+ ϕ(θ,ξ)(qSB(θ))

]
dG(θ, ξ) = 0 ∀ q ∈ Q. (A1)

• If θ ∈ Θint, then q
SB(θ) = qFB(θ) ∈ (0, A). Since qFB is non-decreasing by construction, it

follows that Θint must be an interval. Moreover, since v is stricly convex on (0, A), it follows

that −v′ ◦ qFB is a non-decreasing function with image in [−v′(0),−v′(A)].

Next, by comparing the expressions of qSB in Theorem 2 and q0 in Lemma 2, we deduce

that −v′ ◦ qFB is the weighted least squares projection (with weights equal to consumption

types θ) of θ 7→ −(c + ξ)/θ onto the set Qint of non-decreasing functions whose images are

in [−v′(0),−v′(A)] over the interval Θint:

− v′ ◦ qFB ∈ argmin
q∈Qint

∫
θ∈Θint

∫ ξ

ξ

θ

2

[
c+ ξ

θ
+ q(θ)

]2
dG(θ, ξ)

⇐⇒ qFB ∈ argmin
q∈Q

∫
θ∈Θint

∫ ξ

ξ

θ

2

[
c+ ξ

θ
− v′(q(θ))

]2
dG(θ, ξ).

Consequently, qFB satisfies the variational inequality (cf. Theorem 1.4.2 of Balakrishnan,

1981):

∫
θ∈Θint

∫ ξ

ξ

θ ·
[
qFB(θ)− q(θ)

] [c+ ξ

θ
− v′(qFB(θ))

]
dG(θ, ξ) ≤ 0

⇐⇒
∫
θ∈Θint

∫ ξ

ξ

θ ·
[
qSB(θ)− q(θ)

] [c+ ξ

θ
+ ϕ(θ,ξ)(qSB(θ))

]
dG(θ, ξ) ≤ 0 ∀ q ∈ Q. (A2)

Finally, the desired inequality is obtained by adding equations (A1) and (A2). This completes the

proof of Lemma 3.
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A.4 Proof of Proposition 3

Given an individual demand curve D(·; θ), observe that the deadweight loss due to that consumer

consuming at a marginal price of p(θ) can be written as

DWL(θ, ξ) =

∫ c+ξ

p(θ)

[D(p(θ); θ)−D(s; θ)] ds

= CS(c+ ξ; θ)− CS(p(θ); θ) + [c+ ξ − p(θ)]D(p(θ); θ)

= ∆θ
CS (c+ ξ, p(θ)) .

The expression for deadweight loss in Proposition 3 follows by summing over all consumers. Notice

that this identity does not depend on functional form assumptions on individual demand curves.

A.5 Proof of Proposition 4

Let τ ∗ be the optimal linear tax. By Proposition 3, observe that τ ∗ = E [ξ] and that the deadweight

loss due to the optimal linear tax is V [ξ]. Using the law of cosines for Bregman divergences, observe

that the deadweight loss due to the optimal linear tax for a consumer with consumption type θ is

∆θ
CS (c+ ξ, c+ E [ξ]) = ∆θ

CS (c+ ξ, c+ E[ξ | θ]) + ∆θ
CS (c+ E[ξ | θ], c+ E [ξ]))

+ (ξ − E[ξ | θ]) [D(c+ E [ξ] ; θ)−D(c+ E[ξ | θ]; θ)] .

Taking expectation with respect to ξ | θ yields an alternative expression for V [ξ]:

V [ξ] = E
[
∆θ

CS (c+ ξ, c+ E [ξ])
]︸ ︷︷ ︸

=E[DWL(θ,ξ)]

= E
[
∆θ

CS (c+ ξ, c+ E [ξ | θ])
]
+ E

[
∆θ

CS (c+ E [ξ | θ] , c+ E [ξ])
]

= E
[
E
[
∆θ

CS (c+ ξ, c+ E [ξ | θ]) | θ
]]

+ V [E [ξ | θ]]

= E [V [ξ | θ]] + V [E [ξ | θ]] .

Here, the penultimate equality follows from the law of iterated expectations, and the definitions

of E [·], V [·], and V [· | θ] are as given in the main text. When the second-best allocation function

is strictly, the interpretations of E [V [ξ | θ]] and V [E [ξ | θ]] follow from Corollary 2, which implies

that the second-best nonlinear tax must be τSB(θ) = E [ξ | θ].
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A.6 Proof of Proposition 5

Let W be the distribution as defined in Theorem 2, and recall from Theorem 2 that

qFB(θ) := (v′)−1

(
d

ds

(
co

∫ s

0

c+ E [ξ | θ = W−1(z)]

W−1(z)
dz

)∣∣∣∣
s=W (θ)

)
.

Since qFB is non-decreasing, it is clear that a ban is optimal if and only if qFB(θ) ≤ 0. Now, notice

that this condition is equivalent to

qFB(θ) ≤ 0

⇐⇒ d

ds

(
co

∫ s

0

c+ E [ξ | θ = W−1(z)]

W−1(z)
dz

)∣∣∣∣
s=1

≥ v′(0) (since v′ is decreasing)

⇐⇒
∫ 1

s

[
c+ E [ξ | θ = W−1(s)]

W−1(z)
− v′(0)

]
dz ≥ 0 ∀ s ∈ [0, 1]

⇐⇒
∫ θ

θ̂

∫ ξ

ξ

(c+ ξ − θv′(0)) dG(θ, ξ) ≥ 0 ∀ θ̂ ∈ [θ, θ].

This proves part (i) of Proposition 5; part (ii) of Proposition 5 can be proved similarly by using

the fact that a mandate is optimal if and only if qFB(θ) ≥ 0.

A.7 Proof of Proposition 6

Define

Ψ(s) :=

∫ s

0

c+ E [ξ | θ = W−1(z)]

W−1(z)
dz.

Observe that a quantity floor is optimal if and only if there exists s ∈ (0, 1] such that Ψ(s) ≥
s ·Ψ′(0). This condition is equivalent to

∃ θ∗ ∈ (θ, θ] :

∫ θ∗

θ

[
c+ E [ξ | θ = s]

s
− c+ E [ξ | θ = θ]

θ

]
dW (s) ≥ 0

⇐⇒ ∃ θ∗ ∈ (θ, θ] :

∫ θ∗

θ

∫ ξ

ξ

[
c+ ξ − θ · c+ E [ξ | θ = θ]

θ

]
dG(θ, ξ) ≥ 0

⇐⇒ ∃ θ∗ ∈ (θ, θ] :
c+ E [ξ | θ ≤ θ∗]

c+ E [ξ | θ = θ]
≥ E

[
θ

θ
| θ ≤ θ∗

]
.
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This proves part (i) of Proposition 6; part (ii) of Proposition 6 can be proved similarly by using

the fact that a mandate is optimal if and only if Ψ(1)−Ψ(s) ≤ (1− s) ·Ψ′(1).

A.8 Proof of Corollary 3

Let Ψ be as defined in the proof of Proposition 6. To prove part (i) of Corollary 3, it suffices to

show that

χ′(θ) > 0 =⇒ Ψ(s) ≥ s ·Ψ′(0).

To this end, observe that

Ψ′(s) =
c+ E [ξ | θ = W−1(s)]

W−1(s)
.

Since W is increasing, it follows that χ′(θ) ≥ 0 =⇒ Ψ′(0) is increasing. Therefore Ψ(s) is strictly

convex in a neighborhood of s = 0, from which it must be that Ψ(s) ≥ s · Ψ′(0). Part (ii) of

Corollary 3 follows from a similar argument.
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